1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 1, January 1999

Table of Contents for this issue

Complete paper in PDF format

Effective Medium Theories for Artificial Materials Composed of Multiple Sizes of Spherical Inclusions in a Host Continuum

William M. Merrill, Student Member, IEEE, Rodolfo E. Diaz, Michael M. LoRe, Mark C. Squires, and Nicolaos G. Alexopoulos, Fellow, IEEE

Page 142.

Abstract:

This paper presents the application of nonempirical effective medium theories to describe composite mixtures of spherical inclusions within a host continuum. It is shown that the most common effective medium theories collapse into Bruggeman's asymmetric formula when they are implemented in an iterative scheme to extend their validity to higher volume fractions. Comparisons of dc and 4-GHz data show that of all the formulas Bruggeman's asymmetric formula corresponds best with experiment for large differences between the complex permittivities of the host and inclusion materials. Permeability values are also formulated and compared with experiment and a simple scheme is considered to extend the effective medium theories herein to a description of the diamagnetic effect of induced current in metal spherical inclusions.

References

  1. V. D. A. G. Bruggeman, "Betechnung vershiedener physikalischer konstanten von heterogenen substanzen," Annalen der Physik, vol. 24, ser. 5, pp. 636-664, 1935.
  2. J. Lam, "Magnetic permeability of a simple cubic lattice of conducting magnetic spheres," J. Appl. Phys., vol. 60, no. 12, pp. 4230-4235, Dec. 1986.
  3. L. Olmedo, G. Chateau, C. Deleuze, and J. L. Forveille, "Microwave characterization and modelization of magnetic granular materials,"J. Appl. Phys., vol. 73, no. 10, pp. 6992-6994, May 1993.
  4. W. T. Doyle and I. S. Jacobs, "Effective cluster model of dielectric enhancement in metal-insulator composites,"Phys. Rev. B, vol. 42, no. 15, pp. 9319-9327, Nov. 1990.
  5. G. G. Bush, "On the electromagnetic constitutive parameters of artificial magnetodielectric (AMD) materials," J. Electromagn. Waves, Applicat., vol. 6, no. 9, pp. 1133-1142, 1992.
  6. J. C. M. Garnett, "Colors in metal glasses and in metallic films," Philosoph. Trans. Royal Soc. London, vol. 203, pp. 385-420, 1904.
  7. --, "Colors in metal glasses, in metallic films, and in metallic solutions--II," Philosoph. Trans. Royal Soc. London, vol. 205, pp. 237-288, 1906.
  8. G. A. Niklasson and C. G. Granqvist, "Optical properties and solar selectivity of co-evaporated Co - Al_2O_3 composite films," J. Appl. Phys., vol. 55, no. 9, pp. 3382-3410, May 1, 1984.
  9. W. M. Bruno, "Powder core dielectric waveguides," Ph.D. dissertation, California Inst. Technol., Pasadena, CA, 1986, pp. 140-167.
  10. H. Looyenga, "Dielectric constants of heterogeneous mixtures," Physica, vol. 31, pp. 401-406, 1965.
  11. D. Polder and J. H. Van Santen, "The effective permeability of mixtures of solids," Physica, vol. 12, no. 5, pp. 257-271, Aug. 1946.
  12. I. A. Chmutin, S. V. Letyagin, V. G. Shevchenko, and A. T. Ponomarenko, "Electroconducting polymer composites: Structure, contact phenomena, and anisotropy: A review," Polymer Sci., vol. 36, no. 4, pp. 576-588, 1994.
  13. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed.New York: Pergamon, 1984, pp. 43-44 (transl. J. B. Sykes, J. S. Bell, and M. J. Kearsley).
  14. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization.New York: Elsevier, 1978, vol. II, pp. 476-491.
  15. L. Tsang and J. A. Kong, "Scattering of electromagnetic waves from random media with strong permittivity fluctuations," Radio Sci., vol. 16, no. 3, pp. 303-320, May/June 1981.
  16. W. M. Merrill, "Percolation theory in the analysis and design of artificial dielectrics," M.S. thesis, Univ. California, Los Angeles, 1996.
  17. W. M. Merrill, R. E. Diaz, and N. G. Alexopoulos, "A recasting of the effective parameters of composite mixtures into the language of artificial dielectrics," Physica A, vol. 241, pp. 334-337, June 1997.
  18. R. E. Diaz, "Application of the analytic theory of materials to the modeling of composites in electromagnetic engineering," 13th Annu. Rev. Progress Appl. Computat. Electromagn. Naval Postgrad. School Conf. Proc., Monterey, CA, Mar. 1997, vol. II, pp. 766-773.
  19. R. E. Diaz and N. G. Alexopoulos, "An analytic continuation method for the analysis and design of dispersive materials," IEEE Trans. Antennas Propagat., vol. 45, pp. 1602-1610, Nov. 1997.
  20. --, "The application of the analytic continuation model of dispersive materials to electromagnetic engineering," Electromagn., vol. 18, no. 4, pp. 395-422, July/Aug. 1998.
  21. A. S. Antonov, V. M. Batenin, A. P. Vinogradov, A. A. Kalachev, A. V. Kulakov, A. N. Lagar'kov, S. M. Matytsin, L. V. Panina, K. N. Rozanov, A. K. Sarychev, and Yu. R. Smychkovich, Electrophysical Properties of Percolation Systems.Santa Monica, CA: Phraxos, 1990 (transl. P. Y. Ufimtsev and N. G. Alexopoulos).
  22. A. N. Lagar'kov, "Electrophysical properties of heterogeneous composites in a high-frequency domain of electromagnetic field," Appl. Energy: Russian J. Fuel, Power, Heat Syst., vol. 31, no. 6, pp. 46-69, 1993.
  23. A. N. Lagar'kov, A. K. Sarychev, Y. R. Smychkovich, and A. P. Vinogradov, "Effective medium theory for microwave constant and magnetic permeability of conducting stick composites," J. Electromagn. Waves Applicat., vol. 6, no. 9, pp. 1159-1176, 1992.
  24. J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, "The electrical conductivity of binary disordered systems, percolation clusters, fractals, and related models," Adv. Phys., vol. 39, pp. 191-308, 1990.
  25. S. Kirkpatrick, "Percolation and conduction," Rev. Modern Phys., vol. 45, no. 4, pp. 574-588, Oct. 1973.
  26. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed.Washington, DC: Taylor Francis, 1992.
  27. T. Kauly, B. Keren, and A. Siegmann, "Highly filled thermoplastic composites--II: Effects of particle size distribution on some properties," Polymer Composites, vol. 17, no. 6, pp. 806-815, Dec. 1996.
  28. C. Kittel, "Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies," Phys. Rev., vol. 70, nos. 5 and 6, pp. 281-290, Sept. 1 and 15, 1946.