1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 1, January 1999
Table of Contents for this issue
Complete paper in PDF format
Green's Function for an Unbounded Biaxial Medium
in Cylindrical Coordinates
Panayotis G. Cottis, Christos N. Vazouras, and C. Spyrou
Page 195.
Abstract:
The dyadic Green's function for an unbounded biaxial
medium is treated analytically in the Fourier domain. The Green's
function is initially expressed as a triple Fourier integral, which is
next reduced to a double one by performing the integration over the
longitudinal Fourier variable. A delta-type source term is extracted,
which is dependent on the particular coordinate system.
References
-
E. Arbel and L. B. Felsen, Electromagnetic
Waves.Elmsford, NY: Pergamon, 1969.
-
S. R. Seshadri and T. T. Wu, "Radiation condition for a
magnetoplasma medium," Quart. J. Appl. Mech.
Appl. Phys., vol. 13, pp. 285-313, 1970.
-
S. W. Lee and Y. T. Lo, "Current distribution and input
admittance of an infinite cylindrical antenna in anisotropic
plasma," IEEE Trans. Antennas
Propagat., vol. AP-15, pp. 244-252, 1967.
-
P. G. Cottis and G. D. Kondylis, "Properties of the dyadic
Green's function for an unbounded anisotropic medium,"
IEEE Trans. Antennas Propagat., vol.
43, pp. 154-161, Feb. 1995.
-
F. V. Bunkin, "On radiation in anisotropic media,"
J. Exp. Theor. Phys., vol. 32, pp.
338-146, 1957.
-
V. L. Ginzburg, Propagation of Electromagnetic
Waves in Plasmas.New York: Gordon Breach,
1961.
-
"Electromagnetic wave propagation in anisotropic
media," Radio Sci., vol. 2,
1967 (special issue).
-
I. V. Lindell, Methods for Electromagnetic Field
Analysis.Oxford, U.K.: Clarendon, 1992.
-
W. S. Weiglhofer, "Dyadic Green's function for general
uniaxial media," Proc. IEEE,
vol. 137H, pp. 5-10, Jan. 1990.
-
--, "Analytic methods and free-space dyadic Green's
functions," Radio Sci., vol.
28, pp. 847-857, 1993.
-
W. S. Weiglhofer and A. Lakhtakia, "On singularities of
dyadic Green functions and long wavelength scattering,"
Electromagn., vol. 15, pp.
209-222, 1995.
-
K. K. Mei, "On the perturbational solution to the dyadic
Green's function of Maxwell's equations in anisotropic media,"
IEEE Trans. Antennas Propagat., vol.
AP-19, pp. 665-669, 1971.
-
B. Jakoby and F. Olyslager, "Asymptotic expansions for
Green's dyadics in bianisotropic media," in PIER
12 Progress Electromagn. Res., New York, 1996, pp.
277-302.
-
D. I. Kaklamani and N. K. Uzunoglu, "Radiation of a dipole
in an infinite triaxial anisotropic medium,"
Electromagn., vol. 12, pp.
231-245, 1992.
-
J. Van Bladel, "Some remarks on Green's dyadic for infinite
space," IRE Trans. Antennas
Propagat., vol. 9, pp. 563-566, Nov. 1961.
-
--, Singular Electromagnetic Fields and
Sources.Oxford, U.K.: Clarendon, 1991.
-
J. G. Fikioris, "Electromagnetic field inside a
current-carrying region," J. Math.
Phys., vol. 6, pp. 1617-1620, 1965.
-
A. D. Yaghjian, "Electric dyadic Green's functions in the
source region," Proc. IEEE,
vol. 68, pp. 248-263, Feb. 1980.
-
S. W. Lee, J. Boersma, C. L. Law, and G. A. Deschamps,
"Singularity in Green's function and its numerical
evaluation," IEEE Trans. Antennas
Propagat., vol. AP-28, pp. 311-317, May
1980.
-
J. S. Asvestas, "Comments on `Singularity in Green's
function and its numerical evaluation'," IEEE
Trans. Antennas Propagat., vol. AP-31, pp.
174-177, Jan. 1983.
-
P. H. Pathak, "On the eigenfunction expansion of
electromagnetic dyadic Green's functions," IEEE
Trans. Antennas Propagat., vol. AP-31, pp.
837-846, Nov. 1983.
-
W. C. Chew, "Some observations on the spatial and
eigenfunction representations of dyadic Green's functions,"
IEEE Trans. Antennas Propagat., vol.
37, pp. 1322-1327, Oct. 1989.
-
A. H. Zemanian, Distribution Theory and Transform
Analysis.New York: Dover, 1987.
-
B. Jakoby and F. Olyslager, "Quasi-static asymptotics of
Green dyadics for general bianisotropic media,"
Arch. Elektron. Ubertragungstech.,
vol. 50, pp. 189-195, 1996.