1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 1, January 1999

Table of Contents for this issue

Complete paper in PDF format

Green's Function for an Unbounded Biaxial Medium in Cylindrical Coordinates

Panayotis G. Cottis, Christos N. Vazouras, and C. Spyrou

Page 195.

Abstract:

The dyadic Green's function for an unbounded biaxial medium is treated analytically in the Fourier domain. The Green's function is initially expressed as a triple Fourier integral, which is next reduced to a double one by performing the integration over the longitudinal Fourier variable. A delta-type source term is extracted, which is dependent on the particular coordinate system.

References

  1. E. Arbel and L. B. Felsen, Electromagnetic Waves.Elmsford, NY: Pergamon, 1969.
  2. S. R. Seshadri and T. T. Wu, "Radiation condition for a magnetoplasma medium," Quart. J. Appl. Mech. Appl. Phys., vol. 13, pp. 285-313, 1970.
  3. S. W. Lee and Y. T. Lo, "Current distribution and input admittance of an infinite cylindrical antenna in anisotropic plasma," IEEE Trans. Antennas Propagat., vol. AP-15, pp. 244-252, 1967.
  4. P. G. Cottis and G. D. Kondylis, "Properties of the dyadic Green's function for an unbounded anisotropic medium," IEEE Trans. Antennas Propagat., vol. 43, pp. 154-161, Feb. 1995.
  5. F. V. Bunkin, "On radiation in anisotropic media," J. Exp. Theor. Phys., vol. 32, pp. 338-146, 1957.
  6. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasmas.New York: Gordon Breach, 1961.
  7. "Electromagnetic wave propagation in anisotropic media," Radio Sci., vol. 2, 1967 (special issue).
  8. I. V. Lindell, Methods for Electromagnetic Field Analysis.Oxford, U.K.: Clarendon, 1992.
  9. W. S. Weiglhofer, "Dyadic Green's function for general uniaxial media," Proc. IEEE, vol. 137H, pp. 5-10, Jan. 1990.
  10. --, "Analytic methods and free-space dyadic Green's functions," Radio Sci., vol. 28, pp. 847-857, 1993.
  11. W. S. Weiglhofer and A. Lakhtakia, "On singularities of dyadic Green functions and long wavelength scattering," Electromagn., vol. 15, pp. 209-222, 1995.
  12. K. K. Mei, "On the perturbational solution to the dyadic Green's function of Maxwell's equations in anisotropic media," IEEE Trans. Antennas Propagat., vol. AP-19, pp. 665-669, 1971.
  13. B. Jakoby and F. Olyslager, "Asymptotic expansions for Green's dyadics in bianisotropic media," in PIER 12 Progress Electromagn. Res., New York, 1996, pp. 277-302.
  14. D. I. Kaklamani and N. K. Uzunoglu, "Radiation of a dipole in an infinite triaxial anisotropic medium," Electromagn., vol. 12, pp. 231-245, 1992.
  15. J. Van Bladel, "Some remarks on Green's dyadic for infinite space," IRE Trans. Antennas Propagat., vol. 9, pp. 563-566, Nov. 1961.
  16. --, Singular Electromagnetic Fields and Sources.Oxford, U.K.: Clarendon, 1991.
  17. J. G. Fikioris, "Electromagnetic field inside a current-carrying region," J. Math. Phys., vol. 6, pp. 1617-1620, 1965.
  18. A. D. Yaghjian, "Electric dyadic Green's functions in the source region," Proc. IEEE, vol. 68, pp. 248-263, Feb. 1980.
  19. S. W. Lee, J. Boersma, C. L. Law, and G. A. Deschamps, "Singularity in Green's function and its numerical evaluation," IEEE Trans. Antennas Propagat., vol. AP-28, pp. 311-317, May 1980.
  20. J. S. Asvestas, "Comments on `Singularity in Green's function and its numerical evaluation'," IEEE Trans. Antennas Propagat., vol. AP-31, pp. 174-177, Jan. 1983.
  21. P. H. Pathak, "On the eigenfunction expansion of electromagnetic dyadic Green's functions," IEEE Trans. Antennas Propagat., vol. AP-31, pp. 837-846, Nov. 1983.
  22. W. C. Chew, "Some observations on the spatial and eigenfunction representations of dyadic Green's functions," IEEE Trans. Antennas Propagat., vol. 37, pp. 1322-1327, Oct. 1989.
  23. A. H. Zemanian, Distribution Theory and Transform Analysis.New York: Dover, 1987.
  24. B. Jakoby and F. Olyslager, "Quasi-static asymptotics of Green dyadics for general bianisotropic media," Arch. Elektron. Ubertragungstech., vol. 50, pp. 189-195, 1996.