1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 3, March 1999

Table of Contents for this issue

Complete paper in PDF format

Optimum Design of Feed Structures for High G/T Passive and Active Antenna Arrays

Simsek Demir and Canan Toker

Page 443.

Abstract:

In this work, noise analysis of parallel feed structures is presented. Signal and noise behavior of the feed structures are signified by the newly introduced concepts of "coherent" and "incoherent" impedance match of power-combining structures. It is also shown that a feed structure can be redesigned for low-noise operation without affecting the radiation characteristics. Optimum design of parallel feed structures for low-noise operation is explained. Also an optimum use of active elements in such structures is investigated to have a low overall noise temperature of the antenna array with minimum number of active elements. In the analysis, a new method is introduced where a "noise-equivalent line length" (NELL) is defined. This definition, which unifies the contribution of noise from different array elements, is used in the design of a parallel feed structure and as an active circuit replacement criteria in passive arrays.

References

  1. Y. T. Lo, S. W. Lee, and Q. H. Lee, "Optimization of directivity and signal-to-noise ratio of an arbitrary antenna array," Proc. IEEE, vol. 54, pp. 1033-1045, Aug. 1966.
  2. D. K. Cheng and F. I. Tseng, "Signal-to-noise ratio maximization for receiving arrays," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 792-794, Nov. 1966.
  3. D. K. Cheng, "Optimization techniques for antenna arrays," Proc. IEEE, vol. 59, pp. 1664-1674, Dec. 1971.
  4. L. P. Winkler and M. Schwartz, "A fast numerical method for determining the optimum SNR of an array subject to a Q factor constraint," IEEE Trans. Antennas Propagat., vol. AP-20, pp. 503-505, July 1972.
  5. W. Wasylkiwskyj and W. K. Kahn, "Efficiency as a measure of size of a phased array antenna," IEEE Trans. Antennas Propagat., vol. AP-21, pp. 879-884, Nov. 1973.
  6. R. A. York, R. D. Martinez, and R. C. Compton, "Active patch antenna element for array applications," Electron. Lett., vol. 26, no. 7, pp. 494-495, Mar. 1990.
  7. R. Gillard, H. Legay, J. M. Floch, and J. Citerne, "Rigorous modeling of receiving active microstrip antenna," Electron. Lett., vol. 27, no. 25, pp. 2357-2358, Dec. 1991.
  8. H. An, B. Nauwelaers, and A. van de Capelle, "Broadband active microstrip array elements," Electron. Lett., vol. 27, no. 25, pp. 2378-2379, Dec. 1991.
  9. B. Robert, T. Razban, and A. Papiernik, "Compact amplifier integration in square patch antenna," Electron. Lett., vol. 28, no. 19, pp. 1808-1810, Sept. 1992.
  10. P. S. Hall and P. M. Haskins, "Microstrip active patch array with beam scanning," Electron. Lett., vol. 28, no. 22, pp. 2056-2057, Oct. 1992.
  11. P. S. Hall, "Analysis of radiation from active microstrip antennas," Electron. Lett., vol. 29, no. 1, pp. 127-129, Jan. 1993.
  12. D. Sanchez-Hernandez and I. Robertson, "60 GHz band active microstrip patch antenna for future mobile system applications," Electron. Lett., vol. 30, no. 9, pp. 677-678, Apr. 1994.
  13. H. An, B. Nauwelaers, and A. R. van de Capelle, "Broad-band active microstrip antenna design with the simplified real frequency technique," IEEE Trans. Antennas Propagat., vol. 42, pp. 1612-1619, Dec. 1994.
  14. H. An, B. Nauwelaers, and A. van de Capelle, "Noise figure measurement of receiving active microstrip antennas," Electron. Lett., vol. 29, no. 18, pp. 1594-1596, Sept. 1993.
  15. W. Grabherr and W. Menzel, "Broadband, low noise active receiving microstrip antenna," in Proc. 24th Eur. Microwave Conf., Cannes, France, Sept. 1994, pp. 1785-1790.
  16. R. J. Mailloux, J. McIlvenna, and N. P. Kernweis, "Microstrip array technology," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 25-37, Jan. 1981.
  17. M. A. Weiss, "Microstrip antennas for millimeter waves," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 171-176, Jan. 1981.
  18. P. S. Hall, "Printed antennas: Responding to new applications," in Proc. 26th Eur. Microwave Conf., Prague, Czech Republic, Sept. 1996, pp. 464-470.
  19. Y. T. Lo and S. W. Lee, Antenna Handbook: Theory, Applications and Design.New York: Van Nostrand Reinhold, 1988.
  20. F. Lalezari and C. D. Massey, "mm wave microstrip antennas," Microwave J., vol. 30, no. 4, pp. 87-96, Apr. 1987.
  21. R. J. Mailloux, "Antenna array technology," Proc. IEEE, vol. 80, pp. 163-172, Jan. 1992.
  22. P. Bhartia, K. V. S. Rao, and R. S. Tomar, Millimeter Wave Microstrip and Printed Circuit Antennas.Boston, MA: Artech House, 1991.
  23. E. H. Newman and J. E. Tehan, "Analysis of a microstrip array and feed network," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 397-403, Apr. 1985.
  24. M. L. Oberhart and Y. T. Lo, "New simple feed network for an array module of four microstrip elements," Electron. Lett., vol. 23, no. 9, pp. 436-437, Apr. 1987.
  25. E. Levine, G. Malamud, S. Shtrikman, D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propagat., vol. 37, no. 4, pp. 426-434, Apr. 1989.
  26. D. M. Pozar, "Finite phased arrays of rectangular microstrip patches," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 658-665, May 1986.
  27. R. E. Collin, Antennas and Radiowave Propagation.New York: McGraw-Hill, 1985.
  28. L. I. Parad and R. L. Moynihan, "Split-tee power divider," IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 91-95, Jan. 1965.
  29. S. Demir, C. Toker, and A. Hizal, "Design of an active microstrip array using a microwave circuit simulator," in Proc. IEEE MTT-S Top. Symp. Tech. Wireless Applicat., Vancouver, Canada, Feb. 1997, pp. 103-106.