1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 4, April 1999

Table of Contents for this issue

Complete paper in PDF format

Wide-Band Electromagnetic Scattering from a Dielectric BOR Buried in a Layered Lossy Dispersive Medium

Norbert Geng, Member, IEEE, and Lawrence Carin, Senior Member, IEEE

Page 610.

Abstract:

A method of moments (MoM) analysis is developed for electromagnetic scattering from a dielectric body of revolution (BOR) embedded in a layered medium (the half-space problem constituting a special case). The layered-medium parameters can be lossy and dispersive, of interest for simulating soil. To make such an analysis tractable for the wide-band (short-pulse) applications of interest here, we have employed the method of complex images to evaluate the Sommerfeld integrals characteristic of the dyadic layered-medium Green's function. Example wide-band scattering results are presented, wherein fundamental wave phenomenology is elucidated. Of particular interest, we consider wide-band scattering from a model plastic mine, buried in soil, with the soil covered by a layer of snow.

References

  1. M. G. Andreasen, "Scattering from bodies of revolution," IEEE Trans. Antennas Propagat., vol. 13, pp. 303-310, Mar. 1965.
  2. J. R. Mautz and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., vol. 20, pp. 405-435, June 1969.
  3. T. Wu and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., vol. 12, pp. 709-718, Oct. 1977.
  4. J. R. Mautz and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," AEÜ, vol. 33, pp. 71-80, Feb. 1979.
  5. A. W. Glisson and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antenans Propagat., vol. 28, pp. 593-603, Sept. 1980.
  6. A. W. Glisson, D. Kajfez, and J. James, "Evaluation of modes in dielectric resonators using a surface integral equation formulation," IEEE Trans. Microwave Theory Tech., vol. 31, pp. 1023-1029, Dec. 1983.
  7. A. W. Glisson, "Integral equation techniques," in Dielectric Resonators, D. Kajfez and P. Guillon, Eds.Dedham, MA: Artech House, 1986, pp. 259-325.
  8. D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE Trans. Micowave Theory Tech., vol. 32, pp. 1609-1616, Dec. 1984.
  9. S. D. Gedney and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Trans. Antennas Propagat., vol. 38, pp. 313-322, Mar. 1990.
  10. R. W. P. King and C. W. Harrison, "The transmission of electromagnetic waves and pulses into the earth," J. Appl. Phys., vol. 39, pp. 4444-4452, Aug. 1968.
  11. D. L. Moffatt and R. J. Puskar, "A subsurface electromagnetic pulse radar," Geophys., vol. 41, pp. 506-518, June 1976.
  12. G. S. Smith and W. R. Scott, "A scale model for studying ground penetrating radars," IEEE Trans. Geosci. Remote Sensing, vol. 27, pp. 358-363, July 1989.
  13. C. Liu and L. C. Shen, "Numerical simulation of subsurface radar for detecting buried pipes," IEEE Trans. Geosci. Remote Sensing, vol. 29, pp. 795-798, Sept. 1991.
  14. L. Peters, Jr., J. J. Daniels, and J. D. Young, "Ground penetrating radar as a subsurface environmental sensing tool," Proc. IEEE, vol. 82, pp. 1802-1822, Dec. 1994.
  15. A. C. Dubey and R. L. Barnard, Eds., "Detection and remediation technologies for mines and minelike targets," SPIE Proc., Orlando, FL, vol. 3079, 1997.
  16. S. Vitebskiy and L. Carin, "Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space," IEEE Trans. Antennas Propagat., vol. 43, pp. 1303-1312, Nov. 1995.
  17. S. Vitebskiy, K. Sturgess, and L. Carin, "Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., vol. 44, pp. 143-151, Feb. 1996.
  18. S. Vitebskiy and L. Carin, "Resonances of perfectly conducting wires and bodies of revolution buried in a lossy dispersive half-space," IEEE Trans. Antennas Propagat., vol. 44, pp. 1575-1583, Dec. 1996.
  19. S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, "Ultra-wide-band, short-pulse ground-penetrating radar: Simulation and measurement," IEEE Trans. Geosci. Remote Sensing, vol. 35, pp. 762-772, May1997.
  20. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36-44, Jan. 1996.
  21. N. Geng, D. Jackson, and L. Carin, "On the resonances of a dielectric BOR buried in a dispersive layered medium," submitted to IEEE Trans. Antennas Propagat.
  22. L. Carin, R. Kapoor, and C. E. Baum, "Polarimetric SAR imaging of buried landmines," IEEE Trans. Geosci. Remote Sensing, vol. 36, pp. 1985-1988, Nov. 1998..
  23. H. S. Chang and K. K. Mei, "Scattering of electromagnetic waves by buried and partly buried bodies of revolution," IEEE Trans. Geosci. Remote Sensing, vol. 23, pp. 596-605, 1985.
  24. K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat., vol. 38, pp. 335-344, Mar. 1990.
  25. J. R. Wait, "Image theory of a quasistatic magnetic dipole over a dissipative half-space," Electron. Lett., vol. 5, pp. 281-282, May 1969.
  26. I. V. Lindell and E. Alanen, "Exact image theory for the Sommerfeld half-space problem, Part III: General formulation," IEEE Trans. Antennas Propagat., vol. 32, pp. 1027-1032, Oct. 1984.
  27. Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 588-592, Mar. 1991.
  28. J. J. Yang, Y. L. Chow, and D. G. Fang, "Discrete complex images of a three-dimensional dipole above and within a lossy ground," Proc. Inst. Elect. Eng., vol. 138, pt. H, pp. 319-326, Aug. 1991.
  29. R. M. Shubair and Y. L. Chow, "A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces," IEEE Trans. Antennas Propagat., vol. 41, pp. 806-812, June 1993.
  30. A. J. Poggio, M. L. Van Blaricum, E. K. Miller, and R. Mittra, "Evaluation of a processing technique for transient data," IEEE Trans. Antennas Propagat., vol. 26, pp. 165-173, Jan. 1978.
  31. M. L. Van Blaricum and R. Mittra, "A technique for extracting the poles and residues of a system directly from its transient response," IEEE Trans. Antennas Propagat., vol. 23, pp. 777-781, Nov. 1975.
  32. Y. Hua and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas. Propagat., vol. 37, pp. 229-234, Feb. 1989.
  33. --, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 814-824, May 1990.
  34. Y. Rahmat-Samii, R. Mittra, and P. Parhami, "Evaluation of Sommerfeld integrals for lossy half-space problems," Electromagn., vol. 1, no. 1, pp. 1-28, 1981.
  35. A. K. Abdelmageed and K. A. Michalski, "Analysis of EM scattering by conducting bodies of revolution in layered media using the discrete complex image method," in IEEE Antennas Propagat. Symp. Dig., Newport Beach, CA, June 1995.
  36. M. I. Aksun, "A robust approach for the derivation of closed-form Green's functions," Trans. Microwave Theory Tech., vol. 44, pp. 651-658, May 1996.
  37. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.Englewood Cliffs, NJ: Prentice-Hall, 1973.
  38. J. E. Hipp, "Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture," Proc. IEEE, vol. 62, pp. 98-103, Jan. 1974.
  39. P. Hubral and M. Tygel, "Analysis of the Rayleigh pulse," Geophysics, vol. 54, pp. 654-658, May 1989.
  40. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. I.Reading, MA: Addison-Wesley, 1982.
  41. C. A. Balanis, Advanced Engineering Electromagnetics.New York: Wiley, 1989.
  42. L. Carin, N. Geng, M. McLure, J. Sichina, and L. Nguyen, "Ultra-wide-band synthetic-aperture radar for mine-field detection," IEEE Antennas Propagat. Mag., vol. 41, pp. 18-33, Feb. 1999.