1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 4, April 1999

Table of Contents for this issue

Complete paper in PDF format

Scattering from Several Test-Objects Computed by 3-D Hybrid IE/PDE Methods

Paul Soudais, Member, IEEE, Herve Ste`ve, and Fabrice Dubois

Page 646.

Abstract:

The electromagnetic scattering from composite anis- otropic dielectric and conducting structures is modeled by hybrid partial differential equation--integral equation formulations. We emphasize the role of edge elements for both the partial differential equation and the integral equation discretization and for the coupling of the two. Numerical results from the various formulations presented here and measurements are compared in order to obtain test cases for the development and validation of numerical methods.

References

  1. J. C. Nedelec, "Mixed finite elements in I\! R^3," Numer. Math., vol. 35, pp. 315-341, 1980.
  2. A. Bossavit and J. C. Verite, "A mixed FEM-BIEM method to solve 3-D Eddy-current problems," IEEE Trans. Magn., vol. 18, pp. 431-435, Mar. 1982.
  3. M. L. Barton and Z. J. Cendes, "New vector finite elements for three-dimensional magnetic field computation," J. Appl. Phys., vol. 61, pp. 3919-3921, Apr. 1987.
  4. A. Bossavit, "A rationale for edge elements in 3-D fields computations," IEEE Trans. Magn., vol. 24, pp. 74-79, Jan. 1988.
  5. R. D. Graglia, D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., vol. 45, pp. 329-342, Mar. 1997.
  6. P. A. Raviart and J. M. Thomas, "A mixed finite element method for second-order elliptic problems," Lecture Notes in Maths. N606, Springer Verlag, Berlin, 1977.
  7. S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of any shape," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409-418, May 1982.
  8. D. R. Wilton, "Review of current status and trends in the use of integral equations in computational electromagnetics," Electromagnetics, vol. 12, pp. 287-341, 1992.
  9. L. N. Medgyesi-mitschang, J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Amer. A, vol. 11, no. 4, pp. 1383--1398, Apr. 1994.
  10. K. D. Paulsen, D. R. Lynch, and J. W. Strohbehn, "Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media," IEEE Trans. Microwave Theory Tech., vol. 36, pp. 682--693, Apr. 1988.
  11. J.-M. Jin and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., vol. 39, pp. 97-104, Jan. 1991.
  12. J. J. Angelini, C. Soize, and P. Soudais, "Hybrid numerical method for harmonic 3-D Maxwell equations: Scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium," IEEE Trans. Antennas Propagat., vol. 41, pp. 66-76, Jan. 1993.
  13. P. Soudais, "Computation of the electromagnetic scattering from complex 3D objects by a hybrid FEM/BEM method," J. Electromagn. Waves Applicat., vol. 9, pp. 871-886, July 1995.
  14. X. C. Yuan, "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1053-1058, Aug. 1990.
  15. J.-M. Jin and J. L. Volakis, "Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane," IEEE Trans. Antennas Propagat., vol. 39, pp. 543-550, Apr. 1991.
  16. V. Levillain, "Couplage elements finis-equations integrales pour la resolution des equations de Maxwell en milieux heteroge`nes," Ph.D. dissertation, Ecole Polytechnique, 1991.
  17. X.-Q. Sheng, J.-M. Jin, J. Song, C.-C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering," IEEE Trans. Antennas Propagat., vol. 46, pp. 303-311, Mar. 1998.
  18. P. Soudais, "Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies," IEEE Trans. Antennas Propagat., vol. 42, pp. 954-959, July 1994.
  19. A. F. Peterson, "Analysis of heterogeneous electromagnetic scatterers: Research progress the past decade," Proc. IEEE, vol. 79, pp. 1431-1441, Oct. 1991.
  20. J. M. Jin, The Finite Element Method in Electromagnetics.New York: Wiley, 1993.
  21. S. M. Rao, T. K. Sarkar, P. Midya, and A. R. Djordevic, "Electromagnetic radiation and scattering from finite conducting and dielectric structures: Surface/surface formulations," IEEE Trans. Antennas Propagat., vol. 39, pp. 1034-1037, July 1991.
  22. R. D. Graglia, P. L. E. Uslenghi, and R. S. Zich, "Moment method with isoparametric elements for three-dimensional anisotropic scatterers," Proc. IEEE, vol. 77, pp. 750-760, May 1989.