1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999

Table of Contents for this issue

Complete paper in PDF format

A New Algorithm for the Complex Exponential Integral in the Method of Moments

Michael S. Kluskens, Member, IEEE

Page 803.

Abstract:

This paper presents a new algorithm for the rapid and accurate calculation of the complex exponential integral associated with the mutual impedance of sinusoidal basis and testing functions in the method of moments. The new algorithm uses Leibniz's theorem to calculate Taylor series expansions of the integral instead of integrating expansions of the integrand as is often done. This results in an algorithm which is twice as fast as and is valid over a wider range than previous algorithms. This technique can be applied to many other integrals encountered in computational electromagnetics as well.

References

  1. J. H. Richmond, "Radiation and scattering by thin-wire structures in the complex frequency domain," Tech. Rep. 2902-10, ElectroScience Lab., Ohio State Univ., Columbus, July 1973, abstracted in [13].
  2. --, "Radiation and scattering by thin-wire structures in a homogeneous conducting medium," IEEE Trans. Antennas Propagat., vol. AP-22, p. 365, Mar. 1974.
  3. N. N. Wang, J. H. Richmond, and M. C. Gilreath, "Sinusoidal reaction formulation for radiation and scattering from conducting surfaces," IEEE Trans. Antennas Propagat., vol. AP-23, pp. 376-382, May 1975.
  4. J. H. Richmond and N. H. Geary, "Mutual impedance of nonplanar-skew sinusoidal dipoles," IEEE Trans. Antennas Propagat., vol. AP-23, pp. 412-414, May 1975.
  5. E. H. Newman and D. M. Pozar, "Electromagnetic modeling of composite wire and surface geometries," IEEE Trans. Antennas Propagat., vol. AP-26, pp. 784-789, Nov. 1978.
  6. E. H. Newman and P. Tulyathan, "A surface patch model for polygonal plates," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 588-593, July 1982.
  7. E. H. Newman, "A user's manual for the electromagnetic surface patch code: ESP version IV," Tech. Rep. 716199-11, ElectroScience Lab., Ohio State Univ., Columbus, Aug. 1988.
  8. C. W. Chuang, J. H. Richmond, N. Wang, and P. H. Pathak, "New expressions for mutual impedance of nonplanar-skew sinusoidal monopoles," IEEE Trans. Antennas Propagat., vol. 38, pp. 275-276, Feb. 1990.
  9. M. A. Tilston and K. G. Balmain, "On the suppression of asymmetric artifacts arising in an implementation of the thin-wire method of moments," IEEE Trans. Antennas Propagat., vol. 38, pp. 281-285, Feb. 1990.
  10. F. L. Whetten, K. Liu, and C. A. Balanis, "An efficient numerical integral in three-dimensional electromagnetic field computations," IEEE Trans. Antennas Propagat., vol. 38, pp. 1512-1514, Sept. 1990.
  11. K. Liu, C. A. Balanis, and G. C. Barber, "Exact mutual impedance between sinusoidal electric and magnetic dipoles," IEEE Trans. Antennas Propagat., vol. 39, pp. 684-686, May 1991.
  12. J. J. H. Wang, Generalized Moment Methods in Electromagnetics.New York: Wiley, 1991.
  13. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Eds., Computational Electromagnetics: Frequency-Domain Method of Moments.New York: IEEE, 1992.
  14. K. E. Schmidt, "Simplified mutual impedance of nonplanar skew dipoles," IEEE Trans. Antennas Propagat., vol. 44, pp. 1298-1299, Sept. 1996.
  15. Tables of the Exponential Integral for Complex Arguments, Appl. Math. Ser. 51.Washington, DC: Nat. Bur. Stand., May 1958.
  16. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Appl. Math. Ser. 55.Washington, DC: Nat. Bur. Stand., 1964.
  17. Y. L. Luke, The Special Functions and Their Approximations, vol. II.New York: Academic, 1969.
  18. --, Mathematical Functions and Their Approximations.New York: Academic, 1975.
  19. D. E. Amos, "Computation of exponential integrals of a complex argument," ACM Trans. Math. Software, vol. 16, pp. 169-177, June 1990.
  20. --, "Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument," ACM Trans. Math. Software, vol. 16, pp. 178-182, June 1990.
  21. S. Zhang and J. Jin, Computation of Special Functions.New York: Wiley, 1996.
  22. D. H. Werner, P. L. Werner, J. A. Huffman, A. J. Ferraro, and J. K. Breakall, "An exact solution of the generalized exponential integral and its application to moment method formulations," IEEE Trans. Antennas Propagat., vol. 41, pp. 1716-1719, Dec. 1993.
  23. J. H. Whitteker, "Numerical evaluation of one-dimensional diffraction integrals," IEEE Trans. Antennas Propagat., vol. 45, pp. 1058-1061, June 1997.