1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999
Table of Contents for this issue
Complete paper in PDF format
A New Algorithm for the Complex Exponential Integral in the Method of Moments
Michael S. Kluskens, Member, IEEE
Page 803.
Abstract:
This paper presents a new algorithm for the rapid and
accurate calculation of the complex exponential integral associated with
the mutual impedance of sinusoidal basis and testing functions in the
method of moments. The new algorithm uses Leibniz's theorem to calculate
Taylor series expansions of the integral instead of integrating
expansions of the integrand as is often done. This results in an
algorithm which is twice as fast as and is valid over a wider range than
previous algorithms. This technique can be applied to many other
integrals encountered in computational electromagnetics as
well.
References
-
J. H. Richmond, "Radiation and scattering by thin-wire
structures in the complex frequency domain," Tech. Rep. 2902-10,
ElectroScience Lab., Ohio State Univ., Columbus, July 1973, abstracted
in [13].
-
--, "Radiation and scattering by thin-wire structures
in a homogeneous conducting medium," IEEE Trans.
Antennas Propagat., vol. AP-22, p. 365, Mar.
1974.
-
N. N. Wang, J. H. Richmond, and M. C. Gilreath, "Sinusoidal
reaction formulation for radiation and scattering from conducting
surfaces," IEEE Trans. Antennas
Propagat., vol. AP-23, pp. 376-382, May
1975.
-
J. H. Richmond and N. H. Geary, "Mutual impedance of
nonplanar-skew sinusoidal dipoles," IEEE Trans.
Antennas Propagat., vol. AP-23, pp. 412-414, May
1975.
-
E. H. Newman and D. M. Pozar, "Electromagnetic modeling of
composite wire and surface geometries," IEEE
Trans. Antennas Propagat., vol. AP-26, pp.
784-789, Nov. 1978.
-
E. H. Newman and P. Tulyathan, "A surface patch model for
polygonal plates," IEEE Trans. Antennas
Propagat., vol. AP-30, pp. 588-593, July
1982.
-
E. H. Newman, "A user's manual for the electromagnetic
surface patch code: ESP version IV," Tech. Rep. 716199-11,
ElectroScience Lab., Ohio State Univ., Columbus, Aug. 1988.
-
C. W. Chuang, J. H. Richmond, N. Wang, and P. H. Pathak, "New
expressions for mutual impedance of nonplanar-skew sinusoidal
monopoles," IEEE Trans. Antennas
Propagat., vol. 38, pp. 275-276, Feb.
1990.
-
M. A. Tilston and K. G. Balmain, "On the suppression of
asymmetric artifacts arising in an implementation of the thin-wire
method of moments," IEEE Trans. Antennas
Propagat., vol. 38, pp. 281-285, Feb.
1990.
-
F. L. Whetten, K. Liu, and C. A. Balanis, "An efficient
numerical integral in three-dimensional electromagnetic field
computations," IEEE Trans. Antennas
Propagat., vol. 38, pp. 1512-1514, Sept.
1990.
-
K. Liu, C. A. Balanis, and G. C. Barber, "Exact mutual
impedance between sinusoidal electric and magnetic dipoles,"
IEEE Trans. Antennas Propagat., vol.
39, pp. 684-686, May 1991.
-
J. J. H. Wang, Generalized Moment Methods in
Electromagnetics.New York: Wiley, 1991.
-
E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Eds.,
Computational Electromagnetics: Frequency-Domain Method
of Moments.New York: IEEE, 1992.
-
K. E. Schmidt, "Simplified mutual impedance of nonplanar skew
dipoles," IEEE Trans. Antennas
Propagat., vol. 44, pp. 1298-1299, Sept.
1996.
-
Tables of the Exponential Integral for Complex
Arguments, Appl. Math. Ser. 51.Washington,
DC: Nat. Bur. Stand., May 1958.
-
M. Abramowitz and I. A. Stegun, Eds., Handbook of
Mathematical Functions, Appl. Math. Ser.
55.Washington, DC: Nat. Bur. Stand., 1964.
-
Y. L. Luke, The Special Functions and Their
Approximations, vol. II.New York: Academic,
1969.
-
--, Mathematical Functions and Their
Approximations.New York: Academic,
1975.
-
D. E. Amos, "Computation of exponential integrals of a
complex argument," ACM Trans. Math.
Software, vol. 16, pp. 169-177, June 1990.
-
--, "Algorithm 683: A portable FORTRAN subroutine for
exponential integrals of a complex argument," ACM
Trans. Math. Software, vol. 16, pp. 178-182,
June 1990.
-
S. Zhang and J. Jin, Computation of Special
Functions.New York: Wiley, 1996.
-
D. H. Werner, P. L. Werner, J. A. Huffman, A. J. Ferraro, and J. K.
Breakall, "An exact solution of the generalized exponential
integral and its application to moment method formulations,"
IEEE Trans. Antennas Propagat., vol.
41, pp. 1716-1719, Dec. 1993.
-
J. H. Whitteker, "Numerical evaluation of one-dimensional
diffraction integrals," IEEE Trans. Antennas
Propagat., vol. 45, pp. 1058-1061, June
1997.