1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999

Table of Contents for this issue

Complete paper in PDF format

Faraday Chiral Media Revisited-I: Fields and Sources

W. S. Weiglhofer and S. O. Hansen

Page 807.

Abstract:

Faraday chiral media, previously conceptualized as chiroplasmas or chiroferrites, are envisioned to combine the effects of Faraday rotation and chirality. Electromagnetic field representations for arbitrary sources are derived after the recent correct characterization of the constitutive relations of such media. The scalar Hertz potential (SHP) technique is employed and its applicability is thoroughly investigated. In particular, it is shown that all field components can be derived from one scalar Green function (plus so-called auxiliary source potentials) in source problems, whereas one scalar superpotential suffices for source-free problems. Expressions pertaining to radiation from electric and magnetic dipole sources are presented in a simple and compact form. Further generalizations of the results and the actual realizability of Faraday chiral media are discussed.

References

  1. W. S. Weiglhofer, "A perspective on bianisotropy and Bianisotropics'97," Int. J. Appl. Electromag. Mech., vol. 9, no. 2, 93-101, 1998.
  2. H. C. Chen, Theory of Electromagnetic Waves.New York: McGraw-Hill, 1983.
  3. A. Lakhtakia, Beltrami Fields in Chiral Media.Singapore: World Scientific, 1994.
  4. E. J. Post, Formal Structure of Electromagnetics.New York: Dover, 1997 (reprint of original, Amsterdam, The Netherlands: North-Holland, 1962).
  5. J. A. Kong, "Theorems of bianisotropic media," Proc. IEEE, vol. 60, pp. 1036-1046, 1972.
  6. U. B. Unrau, "A bibliography on research in the field of bi-anisotropic, bi-isotropic and chiral media and their microwave applications," in Proc. Chiral 94, 3rd Int. Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, 1994, Perigueux, France (see Appendix).
  7. A. Priou, A. Sihvola, S. Tretyakov, and A. Vinogradov, Eds., Advances in Complex Electromagnetic Materials.Amsterdam, The Netherlands: Kluwer, 1997.
  8. W. S. Weiglhofer, Ed., Proceedings of Bianisotropics'97 (Int. Conf. and Workshop on Electromagnetics of Complex Media, Univ. Glasgow, U.K., 1997). See also, W. S. Weiglhofer (Guest Ed.), Int. J. Appl. Electromag. Mech. (Special issue: Bianisotropics'97), vol. 9, no. 2, 93-224, 1998.
  9. A. F. Jacob and J. Reichert, Eds., Proceedings of Bianisotropics'98 (7th Int. Conf. Complex Media, Technische Universität Braunschweig, Germany, 1998).
  10. A. Lakhtakia and W. S. Weiglhofer, "On electromagnetic fields in a linear medium with gyrotropic-like magnetoelectric properties," Microwave Opt. Technol. Lett., vol. 15, no. 3, pp. 168-170, 1997.
  11. N. Engheta, D. L. Jaggard, and M. W. Kowarz, "Electromagnetic waves in Faraday chiral media," IEEE Trans. Antennas Propagat., vol. 40, pp. 367-374, Apr. 1992.
  12. C. M. Krowne, "Electromagnetic properties of nonreciprocal composite chiral-ferrite media," IEEE Trans. Antennas Propagat., vol. 41, pp. 1289-1294, Dec. 1993.
  13. W. S. Weiglhofer, "Comment on `Scattering by a biisotropic body' by J. Cesar Monzon," IEEE Trans. Antennas Propagat., vol. 45, pp. 748-749, Apr. 1997.
  14. W. S. Weiglhofer and A. Lakhtakia, "The Post constraint revisited," Arch. Elektr. Übertr., vol. 52, no. 4, pp. 276-279, 1998.
  15. W. Y. Yin and P. Li, "The field distributions and dispersion characteristics in chiroferrite central-loaded wave-guide," Int. J. Infrared Millim. Waves, vol. 15, no. 2, pp. 451-463, 1994.
  16. J. P. Xu, "Propagation characteristics of a circular wave-guide filled with a chiroferrite medium," Int. J. Infrared Millim. Waves, vol. 17, no. 1, pp. 193-203, 1996.
  17. Y. S. Xu and R. G. Bosisio, "A comprehensive study of general bianisotropic wave-guides with the use of coupled-mode analysis," Microwave Opt. Technol. Lett., vol. 12, no. 5, pp. 279-284, 1996.
  18. W. Y. Yin and W. Wan, "Radiation from a dipole in the presence of a grounded arbitrary magnetized chiroferrite slab," Int. J. Infrared Millim. Waves, vol. 15, no. 3, pp. 549-557, 1994.
  19. Z. X. Shen, "Electromagnetic scattering by an impedance cylinder coated eccentrically with a chiroplasma cylinder," Proc. Inst. Elec. Eng., vol. 141, pt. H, no. 4, pp. 279-284, 1994.
  20. W. Y. Yin and W. B. Wang, "The transmission properties of stratified chiroferrite media with obliquely incident plane-wave," Int. J. Infrared Millim. Waves, vol. 15, no. 3, pp. 593-603, 1994.
  21. G. W. Hanson, "A numerical formulation of dyadic Greens-functions for planar bianisotropic media with application to printed transmission-lines," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 144-151, Jan. 1996.
  22. W. S. Weiglhofer and A. Lakhtakia, "The correct constitutive relations of chiroplasmas and chiroferrites," Microwave Opt. Technol. Lett., vol. 17, no. 6, pp. 405-408, 1998.
  23. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, "On the constitutive parameters of a chiroferrite composite medium," Microwave Opt. Technol. Lett., vol. 18, no. 5, pp. 342-345, 1998.
  24. H. Taouk, "Optical wave propagation in active media: Gyrotropic-gyrochiral media," J. Opt. Soc. Amer. A, vol. 14, no. 8, pp. 2006-2012, 1997.
  25. J. J. Sein, "Solutions to time-harmonic Maxwell equations with a Hertz vector," Amer. J. Phys., vol. 57, no. 9, pp. 834-839, 1989.
  26. S. Przezdziecki and R. A. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Appl. Phys., vol. 20, pp. 313-317, 1979.
  27. S. Przezdziecki and W. Laprus, "On the representation of electromagnetic fields in gyrotropic media in terms of scalar Hertz potentials," J. Math. Phys., vol. 23, no. 9, pp. 1708-1712, 1983.
  28. W. Weiglhofer and W. Papousek, "Skalare Hertz'sche Potentiale für gyrotrope Medien," Arch. Elektr. Übertr., vol. 39, no. 6, pp. 363-346, 1985.
  29. W. Weiglhofer, "Reduction of dyadic Green's functions to scalar Hertz potentials for gyrotropic media," Radio Sci., vol. 22, pp. 209-215, 1987.
  30. --, "Isotropic chiral media and scalar Hertz potentials," J. Phys. A: Math. Gen., vol. 21, no. 9, pp. 2249-2251, 1988.
  31. --, "Electromagnetic field representation in (inhomogeneous) iso-tropic chiral media," Electromagn., vol. 10, no. 3, pp. 271-278,1990.
  32. W. S. Weiglhofer and I. V. Lindell, "Fields and potentials in general uniaxial bianisotropic media I. Axial sources," Int. J. Appl. Electromagn. Mater., vol. 4, no. 3, pp. 211-220, 1994.
  33. W. S. Weiglhofer, "Fields and potentials in general uniaxial bianisotropic media II. General sources and inhomogeneities," Int. J. Appl. Electromagn. Mech., vol. 7, no. 1, pp. 1-9, 1996.
  34. --, "Scalarization of Maxwell's equations in general inhomogeneous bianisotropic media," Proc. Inst. Elec. Eng., vol. 134, pt. H, no. 4, pp. 357-360, 1987.
  35. P. L. E. Uslenghi, "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Trans. Antennas Propagat., vol. 45, pp. 284-286, Feb. 1997.
  36. W. S. Weiglhofer, "Scalar Green functions and superpotentials of a Faraday chiral medium," Arch. Elektr. Übertr., vol. 52, no. 2, pp. 109-112, 1998.
  37. W. Weiglhofer and W. Papousek, "Scalar Hertz potentials for transversally oriented current density distributions in gyrotropic media," Arch. Elektr. Übertr., vol. 41, no. 1, pp. 41-45, 1987.
  38. W. Weiglhofer, "Field representation in gyrotropic media by one scalar superpotential," IEEE Trans. Antennas Propagat., vol. 35, pp. 1301-1302, Nov. 1987.
  39. --, "Dyadic Green function for unbounded general uniaxial bianisotropic medium," Int. J. Electron., vol. 77, no. 1, pp. 105-115, 1994.
  40. N. P. Zhuck, "Electromagnetic theory of arbitrarily anisotropic layered media. Part 1. Scalarization of field quantities," Int. J. Electron., vol. 75, pp. 141-148, 1993.
  41. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.Piscataway, NJ: IEEE, 1994.
  42. W. S. Weiglhofer and A. Lakhtakia, "Uniformity constraint on recently conceptualized linear uniaxial bianisotropic media," Electron. Lett., vol. 30, no. 20, pp. 1656-1657, 1994.
  43. A. Lakhtakia and W. S. Weiglhofer, "Constraint on linear, homogeneous constitutive relations," Phys. Rev. E, vol. 50, no. 6, pp. 5017-5019,1994.
  44. --, "Lorentz covariance, Occam's razor, and a constraint on linear constitutive relations," Phys. Lett. A, vol. 213, pp. 107-111, 1996; erratum, vol. 222, p. 459, 1996.
  45. B. Michel and W. S. Weiglhofer, "Pointwise singularity of dyadic Green function in a general bianisotropic medium," Arch. Elektr. Übertr., vol. 51, no. 4, pp. 219-223, 1997; erratum, vol. 52, no. 1, p. 31,1998.
  46. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, "Maxwell Garnett and Bruggeman formalisms for particulate composite with bianisotropic host medium," Microwave Opt. Technol. Lett., vol. 15, no. 4, pp. 263-266, 1997; errata, to be published.
  47. B. Michel, A. Lakhtakia, and W. S. Weiglhofer, "Homogenization of linear bianisotropic particulate composite media--Numerical studies," Int. J. Appl. Electromagn. Mech., vol. 9, no. 2, pp. 167-178, 1998.