1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999

Table of Contents for this issue

Complete paper in PDF format

Hybrid FE/BI Modeling of 3-D Doubly Periodic Structures Utilizing Triangular Prismatic Elements and an MPIE Formulation Accelerated by the Ewald Transformation

Thomas F. Eibert, Member, IEEE, John L. Volakis, Fellow, IEEE, Donald R. Wilton, Fellow, IEEE, and David R. Jackson, Fellow, IEEE

Page 843.

Abstract:

In this paper, we present the formulation of a finite-element/boundary-integral method for the analysis of three-dimensional doubly periodic structures based on arbitrary nonorthogonal lattice configurations. The method starts from a functional description of the field problem where only a single unit cell of the array is considered. This unit cell is meshed with triangular prismatic volume elements and the electric field intensity is discretized with edge-based expansion functions. On the sidewalls of the unit cell, phase boundary conditions are employed to relate the fields on opposing walls of the unit cell. On the top and/or bottom unit-cell planar surfaces, the mesh is terminated using a mixed potential integral equation. The required space-domain periodic Green's function is calculated after applying the Ewald transformation to convert the slowly converging series representation into two rapidly converging series. The method is validated for simple slot and strip frequency-selective surfaces as well as microstrip dipole arrays. More complex geometries investigated are slot-coupled microstrip patches, photonic bandgap materials, and the so-called "artificial puck plate" frequency-selective surface bandpass structure.

References

  1. R. Mittra, C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces--A review," in Proc. IEEE, vol. 76, no. 12, pp. 1593-1615, Dec. 1988.
  2. R. Pous and D. M. Pozar, "A frequency-selective surface using aperture-coupled microstrip patches," IEEE Trans. Antennas Propagat., vol. 39, pp. 1763-1769, Dec. 1991.
  3. H. Aroudaki, V. Hansen, H.-P. Gemünd, and E. Kreysa, "Analysis of low-pass filters consisting of multiple stacked FSS's of different periodicities with applications in the submillimeter radioastronomy," IEEE Trans. Antennas Propagat., vol. 43, no. 12, pp. 1486-1491, 1995.
  4. R. M. Shubair and Y. L. Chow, "Efficient computation of the periodic Green's function in layered dielectric media," IEEE Trans. Antennas Propagat., vol. 41, no. 3, pp. 498-502, 1993.
  5. R. A. Kipp and C. H. Chan, "A numerically efficient technique for the method of moments solution for periodic structures in layered media," IEEE Trans. Microwave Theory Tech., vol. 42, no. 4, pp. 635-643, 1994.
  6. N. Kınayman and M. I. Aksun, "Comparative study of acceleration techniques for integrals and series in electromagnetic problems," Radio Sci., vol. 30, no. 6, pp. 1713-1722, Nov./Dec. 1995.
  7. P. P. Ewald, "Dispersion und Doppelbrechung von Elektronengittern (Kristallen)," Dissertation, München, 1912, also Ann. Phys. 49, p. 1, 1916.
  8. P. P. Ewald, "Die Berechnung optischer und elektrostatischer Gitterpotentiale," Ann. Phys. 64, pp. 253-287, 1921.
  9. K. E. Jordan, G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," J. Comp. Phys., vol. 63, pp. 222-235, 1986.
  10. A. W. Mathis and A. F. Peterson, "Efficient electromagnetic analysis of a doubly infinite array of rectangular apertures," IEEE Trans. Microwave Theory Tech., vol. 46, no. 1, pp. 46-54, 1998.
  11. H.-Y. D. Yang, R. Diaz, and N. G. Alexopoulos, "Reflection and transmission of waves from multilayer structures with planar implanted periodic material blocks," J. Opt. Soc. Amer., Ser. B, vol. 14, no. 10, pp. 2513-2521, Oct. 1997.
  12. S. D. Gedney, J. F. Lee, and R. Mittra, "A combined FEM/MOM approach to analyze the plane wave diffraction by arbitrary gratings," IEEE Trans. Microwave Theory Tech., vol. 40, no. 2, pp. 363-370, 1992.
  13. E. W. Lucas and T. W. Fontana, "A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays," IEEE Trans. Antennas Propagat., vol. 43, no. 2, pp. 145-153, 1995.
  14. D. T. McGrath and V. P. Pyati, "Phased array antenna analysis with the hybrid finite element method," IEEE Trans. Antennas Propagat., vol. 42, no. 12, pp. 1625-1630, 1994.
  15. D. T. McGrath and V. P. Pyati, "Periodic structure analysis using a hybrid finite element method," Radio Sci., vol. 31, no. 5, pp. 1173-1179, Sept./Oct. 1996.
  16. T. Özdemir and J. L. Volakis, "Triangular prisms for edge-based vector finite element analysis of conformal antennas," IEEE Trans. Antennas Propagat., vol. 45, no. 5, pp. 788-797, 1997.
  17. R. D. Graglia, D. R. Wilton, A. F. Peterson, and I.-L. Gheorma, "Higher order interpolatory vector bases on prism elements," IEEE Trans. Antennas Propagat., vol. 46, pp. 442-450, Mar. 1998.
  18. S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, 1982.
  19. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions.New York: Dover, 1965.
  20. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., vol. 32, no. 3, pp. 276-281, 1984.
  21. T. F. Eibert and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., vol. 43, no. 12, pp. 1499-1502, 1995.
  22. D. M. Pozar, "The active element pattern," IEEE Trans. Antennas Propagat., vol. 42, no. 8, pp. 1176-1178, 1994.
  23. R. G. Schmier, "The artificial puck frequency selective surface," in URSI Radio Science Meeting, Ann Arbor, MI, 1993, p. 266.