1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 6, June 1999
Table of Contents for this issue
Complete paper in PDF format
A Multilevel Formulation of the
Finite-Element Method for
Electromagnetic Scattering
Prodromos E. Atlamazoglou, Member, IEEE, Gerasimos C. Pagiatakis,
and Nikolaos K. Uzunoglu, Senior Member, IEEE
Page 1071.
Abstract:
Multigrid techniques for three-dimensional (3-D)
electromagnetic scattering problems are presented. The numerical
representation of the physical problem is accomplished via a
finite-element discretization, with nodal basis functions. A total
magnetic field formulation with a vector absorbing boundary condition
(ABC) is used. The principal features of the multilevel technique are
outlined. The basic multigrid algorithms are described and estimations
of their computational requirements are derived. The multilevel code is
tested with several scattering problems for which analytical solutions
exist. The obtained results clearly indicate the stability, accuracy,
and efficiency of the multigrid method.
References
-
R. P. Fedorenko, "The speed of convergence of one iterative
process," USSR Comput. Math. Math.
Phys., vol. 4, pp. 227-235, 1964.
-
A. Brandt, "Multilevel adaptive technique (MLAT) for fast
numerical solution to boundary value problems," in
Proc. 3rd Int. Conf. Numer. Methods Fluid
Mech., Berlin, Germany, July 1973, vol. 1, pp.
82-89.
-
--, "Multilevel adaptive solutions to boundary value
problems," Math. Comput., vol.
31, pp. 333-390, 1977.
-
W. Hackbush, "On the multigrid method applied to difference
equations," Computing, vol. 20,
pp. 291-306, 1978.
-
--, "On the convergence of multigrid
iterations," Beit. Numer.
Math., vol. 9, pp. 231-329, 1981.
-
K. Kalbasi and K. R. Demarest, "A multilevel formulation of
the method of moments," IEEE Trans. Antennas
Propagat., vol. 41, pp. 589-599, May 1993.
-
Q. Ye, D. G. Fang, C. F. Wang, and R. S. Chen, "Full
multi-grid method for solving wave equation," J.
Microwaves China, vol. 3, pp. 16-21, May
1994.
-
J. Herring and C. Christopoulos, "Solving electromagnetic
field problems using a multiple grid transmission-line modeling
method," IEEE Trans. Antennas
Propagat., vol. 42, pp. 1654-1658, Dec.
1994.
-
S. Costiner, F. Manolache, and S. Ta'asan, "Multilevel
methods applied to the design of resonant cavities,"
IEEE Trans. Microwave Theory Tech.,
vol. 43, pp. 48-55, Jan. 1995.
-
C. F. Wang and D. G. Fang, "Multigrid method and diakoptic
theory," in IEEE Trans. Antennas Propagat. Int.
Symp., Newport Beach, CA, 1995, pp.
1548-1551.
-
K. Goverdahanam, E. Tentzeris, M. Krumpholz, and L. P. B. Katehi,
"An FDTD multigrid based on multiresolution analysis," in
IEEE Trans. Antennas Propagat. Int. Symp.
Dig., Baltimore, MD, July 1996, p. 352.
-
I. Tsukerman, "Application of multilevel preconditioners to
finite element magnetostatic problems," IEEE
Trans. Magn., vol. 30, pp. 3562-3565, Sept.
1994.
-
J. P. Webb and V. N. Kanellopoulos, "Absorbing boundary
conditions for finite element solution of the vector wave
equation," Microwave Opt. Tech.
Lett., vol. 2, no. 10, pp. 370-372, Oct.
1989.
-
K. D. Paulsen and D. R. Lynch, "Elimination of vector
parasites in finite element Maxwell solutions,"
IEEE Trans. Microwave Theory Tech.,
vol. 39, pp. 395-404, Mar. 1991.
-
A. F. Peterson, "A simple approach for estimating error bars
to accompany moment-method and finite-element-method results,"
IEEE Antennas Propagat. Mag., vol.
35, pp. 61-62, Dec. 1993.
-
N. A. Golias and T. D. Tsiboukis, "Three-dimensional
automatic adaptive mesh generation," IEEE Trans.
Magn., vol. 28, pp. 1700-1703, Mar. 1992.
-
S. T. Clegg, K. A. Murphy, W. T. Joines, G. Rine, and T. V.
Samulski, "Finite element computation of electromagnetic
fields," IEEE Trans. Microwave Theory
Tech., vol. 42, pp. 1984-1991, Oct. 1994.
-
C. C. Douglas, "Multi-grid algorithms with applications to
elliptic boundary-value problems," SIAM J. Numer.
Anal., vol. 21, pp. 236-254, 1984.
-
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes: The Art of Scientific
Computing.New York: Cambridge Univ. Press,
1989, pp. 41-43.
-
W. L. Briggs, A Multigrid
Tutorial.Philadelphia, PA: SIAM, 1987, pp.
49-50.
-
P. Wesseling, An Introduction to Multigrid
Methods.Chichester, U.K.: Wiley, 1992, pp.
194-199.
-
R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine, and H. Van Der Vorst,
Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods.Philadelphia,
PA: SIAM, 1993, pp. 52-55.
-
W. E. Boyse and A. A. Seidl, "Hybrid finite element method
for 3-D scattering using nodal and edge elements,"
IEEE Trans. Antennas Propagat., vol.
42, pp. 1436-1442, Oct. 1994.
-
X. Yuan, D. R. Lynch, and K. Paulsen, "Importance of normal
field continuity in inhomogeneous scattering calculations,"
IEEE Trans. Microwave Theory Tech.,
vol. 39, pp. 638-642, Apr. 1991.
-
K. D. Paulsen, X. Jia, and J. M. Sullivan Jr., "Finite
element computations of specific absorption rates in anatomically
conforming full-body models for hyperthermia treatment analysis,"
IEEE Trans. Biomed. Eng., vol. 40,
pp. 933-945, Sept. 1993.
-
H. A. van der Vorst and J. B. M. Melissen, "A
Petrov-Galerkin type method for solving
Ax=b, where
A is symmetric complex,"
IEEE Trans. Magn., vol. 26, pp.
706-708, Mar. 1990.
-
K. Tanabe, "Projection methods for solving a singular system
of linear equations and its applications," Numer.
Math., vol. 17, pp. 203-214, Mar. 1971.