1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 6, June 1999

Table of Contents for this issue

Complete paper in PDF format

A Multilevel Formulation of the Finite-Element Method for Electromagnetic Scattering

Prodromos E. Atlamazoglou, Member, IEEE, Gerasimos C. Pagiatakis, and Nikolaos K. Uzunoglu, Senior Member, IEEE

Page 1071.

Abstract:

Multigrid techniques for three-dimensional (3-D) electromagnetic scattering problems are presented. The numerical representation of the physical problem is accomplished via a finite-element discretization, with nodal basis functions. A total magnetic field formulation with a vector absorbing boundary condition (ABC) is used. The principal features of the multilevel technique are outlined. The basic multigrid algorithms are described and estimations of their computational requirements are derived. The multilevel code is tested with several scattering problems for which analytical solutions exist. The obtained results clearly indicate the stability, accuracy, and efficiency of the multigrid method.

References

  1. R. P. Fedorenko, "The speed of convergence of one iterative process," USSR Comput. Math. Math. Phys., vol. 4, pp. 227-235, 1964.
  2. A. Brandt, "Multilevel adaptive technique (MLAT) for fast numerical solution to boundary value problems," in Proc. 3rd Int. Conf. Numer. Methods Fluid Mech., Berlin, Germany, July 1973, vol. 1, pp. 82-89.
  3. --, "Multilevel adaptive solutions to boundary value problems," Math. Comput., vol. 31, pp. 333-390, 1977.
  4. W. Hackbush, "On the multigrid method applied to difference equations," Computing, vol. 20, pp. 291-306, 1978.
  5. --, "On the convergence of multigrid iterations," Beit. Numer. Math., vol. 9, pp. 231-329, 1981.
  6. K. Kalbasi and K. R. Demarest, "A multilevel formulation of the method of moments," IEEE Trans. Antennas Propagat., vol. 41, pp. 589-599, May 1993.
  7. Q. Ye, D. G. Fang, C. F. Wang, and R. S. Chen, "Full multi-grid method for solving wave equation," J. Microwaves China, vol. 3, pp. 16-21, May 1994.
  8. J. Herring and C. Christopoulos, "Solving electromagnetic field problems using a multiple grid transmission-line modeling method," IEEE Trans. Antennas Propagat., vol. 42, pp. 1654-1658, Dec. 1994.
  9. S. Costiner, F. Manolache, and S. Ta'asan, "Multilevel methods applied to the design of resonant cavities," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 48-55, Jan. 1995.
  10. C. F. Wang and D. G. Fang, "Multigrid method and diakoptic theory," in IEEE Trans. Antennas Propagat. Int. Symp., Newport Beach, CA, 1995, pp. 1548-1551.
  11. K. Goverdahanam, E. Tentzeris, M. Krumpholz, and L. P. B. Katehi, "An FDTD multigrid based on multiresolution analysis," in IEEE Trans. Antennas Propagat. Int. Symp. Dig., Baltimore, MD, July 1996, p. 352.
  12. I. Tsukerman, "Application of multilevel preconditioners to finite element magnetostatic problems," IEEE Trans. Magn., vol. 30, pp. 3562-3565, Sept. 1994.
  13. J. P. Webb and V. N. Kanellopoulos, "Absorbing boundary conditions for finite element solution of the vector wave equation," Microwave Opt. Tech. Lett., vol. 2, no. 10, pp. 370-372, Oct. 1989.
  14. K. D. Paulsen and D. R. Lynch, "Elimination of vector parasites in finite element Maxwell solutions," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 395-404, Mar. 1991.
  15. A. F. Peterson, "A simple approach for estimating error bars to accompany moment-method and finite-element-method results," IEEE Antennas Propagat. Mag., vol. 35, pp. 61-62, Dec. 1993.
  16. N. A. Golias and T. D. Tsiboukis, "Three-dimensional automatic adaptive mesh generation," IEEE Trans. Magn., vol. 28, pp. 1700-1703, Mar. 1992.
  17. S. T. Clegg, K. A. Murphy, W. T. Joines, G. Rine, and T. V. Samulski, "Finite element computation of electromagnetic fields," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1984-1991, Oct. 1994.
  18. C. C. Douglas, "Multi-grid algorithms with applications to elliptic boundary-value problems," SIAM J. Numer. Anal., vol. 21, pp. 236-254, 1984.
  19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing.New York: Cambridge Univ. Press, 1989, pp. 41-43.
  20. W. L. Briggs, A Multigrid Tutorial.Philadelphia, PA: SIAM, 1987, pp. 49-50.
  21. P. Wesseling, An Introduction to Multigrid Methods.Chichester, U.K.: Wiley, 1992, pp. 194-199.
  22. R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van Der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.Philadelphia, PA: SIAM, 1993, pp. 52-55.
  23. W. E. Boyse and A. A. Seidl, "Hybrid finite element method for 3-D scattering using nodal and edge elements," IEEE Trans. Antennas Propagat., vol. 42, pp. 1436-1442, Oct. 1994.
  24. X. Yuan, D. R. Lynch, and K. Paulsen, "Importance of normal field continuity in inhomogeneous scattering calculations," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 638-642, Apr. 1991.
  25. K. D. Paulsen, X. Jia, and J. M. Sullivan Jr., "Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis," IEEE Trans. Biomed. Eng., vol. 40, pp. 933-945, Sept. 1993.
  26. H. A. van der Vorst and J. B. M. Melissen, "A Petrov-Galerkin type method for solving Ax=b, where A is symmetric complex," IEEE Trans. Magn., vol. 26, pp. 706-708, Mar. 1990.
  27. K. Tanabe, "Projection methods for solving a singular system of linear equations and its applications," Numer. Math., vol. 17, pp. 203-214, Mar. 1971.