1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 6, June 1999

Table of Contents for this issue

Complete paper in PDF format

Ultrawide-Band Coherent Processing

Kevin M. Cuomo, Jean E. Piou, and Joseph T. Mayhan

Page 1094.

Abstract:

In this paper, we develop an approach for estimating the ultrawide-band (UWB) radar signature of a target by using sparse subband measurements. First, we determine the parameters of an appropriate signal model that best fits the measured data. Next, the fitted signal model is used to interpolate between and extrapolate outside of the measurement subbands. Standard pulse-compression methods are then applied to provide superresolved range profiles of the target. The algorithm can automatically compensate for lack of mutual coherence between the radar subbands, providing the potential for UWB processing of real-world radar data collected by separate wide-band radars. Because the processing preserves the phase distribution across the measured and estimated subbands, extended coherent processing can be applied to the UWB compressed radar pulses to generate superresolved radar images of the target. Applications of this approach to static test range and field data show promising results.

References

  1. M. Skolnik, Radar Handbook, 2nd ed.New York: McGraw-Hill, 1990.
  2. K. R. Roth, M. E. Austin, D. J. Frediani, G. H. Knittel, and A. V. Mrstik, "The Kiernan reentry measurements system on Kwajalein Atoll," Lincoln Lab. J., vol. 2, no. 2, pp. 247-276, 1989.
  3. K. M. Cuomo, "A bandwidth extrapolation technique for improved range resolution of coherent radar data," Lincoln Lab., Massachusetts Inst. Technol., Lexington, MA, Proj. Rep. CJP-60, Rev. 1, Dec. 4, 1992, DTIC ADA-258462.
  4. S. L. Borison, S. B. Bowling, and K. M. Cuomo, "Super-resolution methods for wideband radar," Lincoln Lab. J., vol. 5, no. 3, pp. 441-461, 1992.
  5. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Amer., vol. 52, no. 2, pp. 116-130, 1962.
  6. W. M. Steedly and R. L. Moses, "High resolution exponential modeling of fully polarized radar returns," IEEE Trans. Aerosp. Electron. Syst., vol. 27, pp. 459-469, 1991.
  7. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction.Dedham, MA: Artech House, 1985, pp. 178-179.
  8. S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao, "State-space and singular-value decomposition-based approximation methods for the Harmonic retrieval problem," J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1799-1811, 1983.
  9. H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. 19, pp. 716-723, June 1974.
  10. M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, pp. 387-392, Feb. 1995.
  11. J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, no. 5, pp. 465-471, 1978.
  12. M. Wax and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1190-1196, Aug. 1989.
  13. A. J. Barabell, J. Capon, D. F. DeLong, J. R. Johnson, and K. D. Senne, "Performance comparison of superresolution array processing algorithms," Lincoln Lab., Massacusetts Inst. Technol.. Lexington, MA, Proj. Rep. TST-72, May 9, 1984, Rev. June 15, 1998.
  14. S. W. Lang and J. H. McClellan, "Frequency estimation with maximum entropy spectral estimators," IEEE Trans. Acoust., Speech, Signal Processing, vol. 28, pp. 716-724, June 1980.
  15. R. O. Schmidt, "A signal subspace approach to multiple emitter location and spectral estimation," Ph.D. dissertation, Stanford Univ., Stanford, CA, 1981.
  16. T.-J. Shan, M. Wax, and T. Kailath, "On spatial smoothing for direction-of-arrival estimation of coherent signals," IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, pp. 806-811, Apr. 1985.
  17. A. Paulraj, R. Roy, and T. Kailath, "Estimation of signal parameters via rotational invariance techniques--ESPRIT," in 19th Asilomar Conf. Circuits, Syst., Comput., Pacific Grove, CA, Nov. 1986, pp. 83-89.
  18. D. W. Tufts and C. D. Melissinos, "Simple, effective com-putation of principal eigenvectors and their eigenvalues and application to high-resolution estimation frequencies," IEEE Trans. Acoust., Speech, Signal Processing, vol. 34, pp. 1046-1053, May 1986.
  19. A. Moghaddar, Y. Ogawa, and E. K. Walton, "Estimating the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm," IEEE Trans. Antennas Propagat., vol. 42, pp. 1412-1418, Oct. 1994.
  20. C. W. Ma and C. C. Teng, "Detection of coherent signals using weighted subspace smoothing," IEEE Trans. Antennas Propagat., vol. 44, pp. 179-187, Feb. 1996.
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.Cambridgeshire, U.K.: Cambridge Univ. Press, 1992.