1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 7, July 1999

Table of Contents for this issue

Complete paper in PDF format

A Parametric Model for Synthetic Aperture Radar Measurements

Michael J. Gerry, Lee C. Potter, Senior Member, IEEE, Inder J. Gupta, Senior Member, IEEE, and Andria van der Merwe

Page 1179.

Abstract:

We present a parametric model for radar scattering as a function of frequency and aspect angle. The model is used for analysis of synthetic aperture radar measurements. The estimated parameters provide a concise, physically relevant description of measured scattering for use in target recognition, data compression and scattering studies. The scattering model and an image domain estimation algorithm are applied to two measured data examples.

References

  1. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Amer., vol. 52, pp. 116-130, 1962.
  2. L. C. Potter, D.-M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propagat., vol. 43, pp. 1058-1067, Oct. 1995.
  3. D. L. Mensa, High-Resolution Radar Cross SectionImaging.Boston, MA: Artech House, 1991.
  4. M.-W. Tu, I. J. Gupta, and E. K. Walton, "Application of maximum likelihood estimation to radar imaging," IEEE Trans. Antennas Propagat., vol. 45, pp. 20-27, Jan. 1997.
  5. I. J. Gupta, "High-resolution radar imaging using 2-D linear prediction," IEEE Trans. Antennas Propagat., vol. 42, pp. 31-37, Jan. 1994.
  6. J. J. Sacchini, "Development of two-dimensional parametric radar signal modeling and estimation techniques with application to target identification," Ph.D. dissertation, The Ohio State Univ., Columbus, 1992.
  7. R. Bhalla and H. Ling, "Three-dimensional scattering center extraction using shooting and bouncing ray technique," IEEE Trans. Antennas Propagat., vol. 44, pp. 1445-1453, Nov. 1996.
  8. L. C. Potter and R. L. Moses, "Attributed scattering centers for SAR ATR," IEEE Trans. Image Processing, vol. 6, pp. 79-91, Jan. 1997.
  9. Y. Hua, "High resolution imaging of continuously moving object using stepped frequency radar," Signal Processing, vol. 35, no. 1, pp. 33-40, Jan. 1994.
  10. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, vol. 62, pp. 1448-1461, Nov. 1974.
  11. M. A. Plonus, R. Williams, and S. C. H. Wang, "Radar cross section of curved plates using geometrical and physical diffraction techniques," IEEE Trans. Antennas Propagat., vol. AP-26, pp. 488-493, May 1978.
  12. R. A. Ross, "Radar cross section of rectangular flat plates as a function of aspect angle," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 329-335, May 1966.
  13. D.-M. Chiang, "Parametric signal processing techniques for model mismatch and mixed parameter estimation," Ph.D. dissertation, The Ohio State University, Columbus, 1995.
  14. D. C. Munson, J. D. O'Brian, and W. K. Jenkins, "A tomographic formulation of spotlight-mode synthetic aperture radar," Proc. IEEE, vol. 71, pp. 917-925, Aug. 1983.
  15. A. Dutt and V. Rohklin, "Fast fourier transforms for nonequispaced data II," Appl. Computat. Harmonic Anal., vol. 2, no. 1, pp. 85-100, 1995.
  16. M. J. Gerry, "Two-dimensional inverse scattering based on the GTD model," Ph.D. dissertation, The Ohio State Univ., Columbus, 1997.
  17. G. Franceschetti, A. Iodice, and M. Tesauro, "From image processing to feature processing," Signal Processing, vol. 60, pp. 51-63, 1997.
  18. J. Stach and E. LeBaron, "Enhanced image editing by peak region segmentation," in Proc. Antenna Meas. Tech. Assoc. 18th Symp., Seattle, WA, Sept. 1996, pp. 303-307.
  19. J. A. Nelder and R. Mead, "A simplex method for function minimization," Computer J., vol. 7, pp. 308-313, 1965.
  20. A. Sabharwal and L. Potter, "Model selection for nested model classes with cost constraints," in Proc. 9th IEEE Workshop Statistical Signal Array Processing, Portland, OR, Sept. 1998, pp. 84-87.
  21. M. Koets, "Application of two-dimensional inverse scattering models to measured SAR imagery," M.S. thesis, The Ohio State Univ., Columbus, 1998.
  22. S. R. DeGraaf, "SAR imaging via modern 2-D spectral estimation methods," IEEE Trans. Image Processing, vol. 7, pp. 729-761, May 1998.
  23. E. K. Walton and J. D. Young, "The Ohio State University compact radar-cross section measurement range," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1218-1223, Nov. 1984.
  24. H. L. Van Trees, Detection, Estimation, and Modulation Theory--Part I.New York: Wiley, 1968.
  25. M. P. Clark, "On the resolvability of normally distributed vector parameter estimates," IEEE Trans. Signal Processing, vol. 43, pp. 2975-2981, Dec. 1995.
  26. E. R. Keydel, S. W. Lee, and J. T. Moore, "MSTAR extended operating conditions: A tutorial," in Conf. Algorithms Synthetic Aperture Radar Imagery III, Proc. SPIE, Orlando, FL, Apr. 1996, pp. 228-242.
  27. L. M. Novak, G. J. Owirka, and C. M. Netishen, "Performance of a high-resolution polarimetric SAR automatic target recognition system," Lincoln Lab. J., vol. 6, no. 1, pp. 11-24, 1993.