1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 8, August 1999

Table of Contents for this issue

Complete paper in PDF format

On the Resonances of a Dielectric BOR Buried in a Dispersive Layered Medium

Norbert Geng, Member, IEEE, David R. Jackson, Fellow, IEEE, and Lawrence Carin, Senior Member, IEEE

Page 1305.

Abstract:

A method-of-moments (MoM) analysis is applied to the problem of determining late-time resonances of dielectric bodies of revolution buried in a lossy layered medium, with application to plastic-land-mine identification. To make such an analysis tractable, we have employed the method of complex images to evaluate the layered-medium Green's function. The application of this method to resonant structures characterized by complex resonant frequencies, introduces numerical issues not manifested at real frequencies (i.e., for driven problems) with such discussed here in detail. Numerical results are presented for several buried targets in which we demonstrate, for example, the spiraling character of the resonant frequencies of particular targets as a function of target depth.

References

  1. C. E. Baum, "On the singularity expansion method for the solution of electromagnetic interaction problems," Air Force Weapons Lab. Interaction Notes, Note 88, 1971.
  2. E. Heyman and L.B. Felsen, "A wavefront interpretation of the singularity expansion method," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 706-718, July 1985.
  3. H. Shirai and L. B. Felsen, "Modified GTD for generating complex resonances for flat strips and disks," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 779-790, June 1986.
  4. L. Marin, "Natural mode representation of transient scattered fields," IEEE Trans. Antennas Propagat., vol. AP-21, pp. 809-818, Nov.1973.
  5. F. M. Tesche, "On the analysis of scattering and antenna problems using the singularity expansion technique," IEEE Trans. Antennas Propagat., vol. AP-21, pp. 53-62, Jan. 1973.
  6. B. L. Merchant, P. L. Moser, A. Nagl, and Überall, "Complex pole patterns of the scattering amplitude for conducting spheroids and finite-length cylinders," IEEE Trans. Antennas Propagat., vol. 36, pp. 1769-1777, Dec. 1988.
  7. E. J. Rothwell, J. Baker, K.-M. Chen, and D. P. Nyquist, "Approximate natural response of an arbitrary shaped thin wire scatterer," IEEE Trans. Antennas Propagat., vol. 39, pp. 1457-1462, Oct. 1991.
  8. L. Peters, Jr. and J. D. Young, "Applications of subsurface transient radars," in Time-Domain Measurements in Electromagnetics, E. K. Miller, Ed.New York: Van Nostrand Reinhold, 1986.
  9. L. Peters, Jr., J. J. Daniels, and J. D. Young, "Ground penetrating radar as an environmental sensing tool," Proc. IEEE, vol. 82, pp. 1802-1822, Dec. 1994.
  10. M. L. Van Blaricum and R. Mittra, "A technique for extracting the poles and residues of a system directly from its transient response," IEEE Trans. Antennas Propagat., vol. AP-23, pp. 777-781, Nov.1975.
  11. D. G. Dudley, "Parametric modeling of transient electromagnetic systems," Radio Sci., vol. 14, pp. 387-396, 1979.
  12. Y. Hua and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 814-824, May 1990.
  13. S. Vitebskiy and L. Carin, "Resonances of perfectly conducting wires and bodies of revolution buried in a lossy, dispersive half space," IEEE Trans. Antennas Propagat., vol. 28, pp. 1575-1583, Dec. 1996.
  14. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of ground penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36-28, Jan. 1996.
  15. H. S. Chang and K. K. Mei, "Scattering of electromagnetic waves by buried and partly buried bodies of revolution," IEEE Trans. Geosci. Remote Sensing, vol. GRS-23, pp. 596-592, July 1985.
  16. A. C. Dubey and R. L. Barnard, Eds., "Detection and remediation technologies for mines and minelike targets," Proc. SPIE, vol. 3079, 1997.
  17. J. R. Wait, "Image theory of a quasistatic magnetic dipole over a dissipative half-space," Electron. Lett., vol. 5, no. 13, pp. 281-282, June 1969.
  18. Y. Rahmat-Samii, R. Mittra, and P. Parhami, "Evaluation of Sommerfeld integrals for lossy half-space problems," Electromagn., vol. 1, no. 1, pp. 1-28, 1981.
  19. S. F. Mahmoud and A. D. Metwally, "New image representations for dipoles near a dissipative earth," Radio Sci., vol. 21, pp. 605-616, Nov. 1981.
  20. I. V. Lindell and E. Alanen, "Exact image theory for the Sommerfeld half-space problem, Part III: General formulation," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1027-1032, Oct. 1984.
  21. K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in Layered media, Parts I and II," IEEE Trans. Antennas Propagat., vol. 38, pp. 335-352, Mar. 1990.
  22. J. J. Yang, Y. L. Chow, D. G. Fang, "Discrete complex images of a three-dimensional dipole above and within a lossy ground," Proc. Inst. Elect. Eng., vol. 138, pt. H, no. 4, pp. 319-326, Aug. 1991.
  23. R. M. Shubair and Y. L. Chow, "A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces," IEEE Trans. Antennas Propagat., vol. 41, pp. 806-812, June 1993.
  24. Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 588-562, Mar. 1991.
  25. S. Vitebskiy, K. Sturgess, and L. Carin, "Short-pulse scattering from buried perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., vol. 28, pp. 143-151, Feb. 1996.
  26. W.C. Chew, Waves and Fields in Inhomogeneous Media.Piscataway, NJ: IEEE Press, 1995.
  27. T. Tamir and A. A. Oliner, "Guided complex waves--Fields at an interface: Part I; Relation to radiation patterns: Part II," Proc. Inst. Elect. Eng., vol. 110, pp. 310-334, 1963.
  28. S. R. Vechinski and T. H. Shumpert, "Natural resonances of conducting bodies of revolution," IEEE Trans. Antennas Propagat., vol. 38, pp. 1133-1136, July 1990.
  29. A. W. Glisson, D. Kajfez, and J. James, "Evaluation of the modes in dielectric resonators using a surface integral equation formulation," IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 1023-1029, Dec. 1983.
  30. S. Vitebskiy and L. Carin, "Resonances of perfectly conducting wires and bodies of revolution buried in a lossy dispersive halfspace," IEEE Trans. Antennas Propagat., vol. 28, pp. 1575-1583, Dec. 1996.
  31. N. Geng and L. Carin, "Wideband electromagnetic scattering from a dielectric BOR buried in a layered lossy, dispersive medium," IEEE Trans. Antennas Propagat., vol. 47, pp. 610-619, Apr. 1999.
  32. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.Englewood Cliffs, NJ: Prentice-Hall, 1973.
  33. N. K. Das and D. M. Pozar, "Full-wave spectral-domain computation of material, radiation and guided-wave losses in infinite multilayered printed transmission lines," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 54-63, Jan. 1991.
  34. L. Carin and N. K. Das, "Leaky waves on broadside-coupled microstrip," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 58-66, Jan. 1992.
  35. M. Tsuji and H. Shigesawa, "Packaging of printed circuit lines: A dangerous cause of narrow pulse distortion," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1784-1790, Sept. 1994.
  36. C. J. Madden, M. J. W. Rodwell, R. A. Marsland, Y. C. Pao, and D. M. Bloom, "Generation of 3.5 ps fall-time shock waves on a monolithic GaAs nonlinear transmission line," IEEE Electron. Device Lett., vol. 9, p. 303, 1988.
  37. K. A. Michalski and D. Zheng, "Analysis of microstrip resonators of arbitrary shape," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 112-119. Jan. 1992.
  38. J. E. Hipp, "Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture," Proc. IEEE, vol. 62, pp. 98-103, Jan. 1974.
  39. K. E. Oughstun and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics.New York: Springer-Verlag, 1994, vol. 16.
  40. L. S. Riggs and T. H. Shumpert, "Trajectories of singularities of a thin wire scatterer parallel to lossy ground," IEEE Trans. Antennas Propagat., vol. AP-27, pp. 864-868, Nov. 1979.
  41. E. J. Rothwell and M. J. Cloud, "On the natural frequencies of an annular ring above a conducting half space," J. Electron. Waves Appl., vol. 10, pp. 155-179, Feb. 1996.
  42. S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, "Ultra-wideband, short-pulse ground-penetrating radar: Simulation and measurement," IEEE Trans. Geosci. Remote Sensing, vol. 35, pp. 762-772, May 1997.