1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 9, September 1999

Table of Contents for this issue

Complete paper in PDF format

Scattering from Natural Rough Surfaces Modeled by Fractional Brownian Motion Two-Dimensional Processes

Giorgio Franceschetti, Fellow, IEEE, Antonio Iodice, Student Member, IEEE, Maurizio Migliaccio, Member, IEEE, and Daniele Riccio, Senior Member, IEEE

Page 1405.

Abstract:

A model for electromagnetic scattering from natural rough surfaces described by means of fractional Brownian motion model is developed. The fractal surface model is employed to obtain the Kirchhoff solution of the Stratton-Chu scattering integral. An analytical viable formulation is achieved and compared to available classical solutions. Comparison with experimental data is also provided. Results show advantages of proposed solution from both theoretical and experimental viewpoint.

References

  1. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces.Norwood, MA: Artech House, 1987.
  2. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing.New York: Wiley, 1985.
  3. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing.Reading, MA: Addison-Wesley, 1982, vol. II.
  4. A. K. Fung, Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 356-369, Mar. 1992.
  5. A. K. Fung, Microwave Scattering and Emission. Models and Their Applications.Norwood, MA: Artech House, 1994.
  6. M. F. Chew and A. K. Fung, "A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models," Radio Sci., vol. 23, no. 2, pp. 163-170, Mar./Apr. 1988.
  7. Y. Oh, K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 370-381, Mar. 1992.
  8. S. R. Brown and C. H. Scholz, "Broad-band study of the topography of natural rock surfaces," J. Geophys. Res., vol. 90, no. B14, pp. 12575-12582, Dec. 1985.
  9. B. B. Mandelbrot, The Fractal Geometry of Nature.New York: Freeman, 1983.
  10. R. F. Voss, "Random fractal forgeries," in Fundamental Algorithms for Computer Graphics, R. A. Earnshaw, Ed.Berlin, Germany: Springer-Verlag, 1985, pp. 805-835.
  11. T. R. Austin, A. W. England, and G. H. Wakefield, "Special problems in the estimation of power-law spectra as applied to topographical modeling," IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 928-939, July 1994.
  12. Y. Agnon and M. Stiassnie, "Remote sensing of the roughness of a fractal sea surface," J. Geophys. Res., vol. 96, no. C7, pp. 12773-12779, July 1991.
  13. K. Falconer, Fractal Geometry.Chichester, U.K.: Wiley, 1990.
  14. M. V. Berry and T. M. Blackwell, "Diffractal echoes," J. Phys. A Math. Gen., vol. 14, pp. 3101-3110, 1981.
  15. D. L. Jaggard, "On fractal electrodynamics," in Recent Advances in Electromagnetic Theory, H. N. Kritikos and D. L. Jaggard, Eds.Berlin, Germany: Springer-Verlag, 1990, pp. 183-223.
  16. G. Franceschetti, M. Migliaccio, and D. Riccio, "An electromagnetic fractal-based model for the study of fading," Radio Sci., vol. 31, pp. 1749-1759, Nov./Dec. 1996.
  17. J. Chen, T. K. L. Lo, H. Leung, and J. Litva, "The use of fractals for modeling EM waves scattering from rough sea surface," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 966-972, July 1996.
  18. E. Bahar, D. E. Barrick, and M. A. Fitzwater, "Computations of scattering cross sections for composite surfaces and the specification of the wavenumber where spectral splitting occurs," IEEE Trans. Antennas Propagat., vol. AP-31, pp. 698-709, Sept. 1983.
  19. J. C. West, B. S. O'Leary, and J. Klinke, "Numerical calculation of electromagnetic scattering from measured wind-roughned water surfaces," Int. J. Remote Sensing, vol. 19, no. 7, pp. 1377-1393, 1998.
  20. H. T. Chou and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Sci., vol. 33, pp. 1277-1287, Sept./Oct. 1998.
  21. E. Rodriguez, "Beyond the Kirchhoff approximation," Radio Sci., vol. 24, pp. 681-693, Sept./Oct. 1989.
  22. A. Ishimaru, Wave Propagation and Scattering in Random Media.New York: Academic, 1993.
  23. P. Flandrin, "On the spectrum of fractional Brownian motions," IEEE Trans. Inform. Theory, vol. 35, pp. 197-199, Jan. 1989.
  24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products.New York: Academic, 1980.
  25. R. E. Glazman, "Near-nadir radar backscatter from a well developed sea," Radio Sci. vol. 25, pp. 1211-1219, 1990.
  26. A. Collaro, G. Franceschetti, M. Migliaccio, and D. Riccio, "Gaussian rough surfaces and Kirchhoff approximation," IEEE Trans. Antennas Propagat., to be published
  27. K. Yocoya, K. Yamamoto, and N. Funakubo, "Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling," Computer Vision, Graphics, Image Processing, vol. 46, pp. 284-302, 1989.
  28. C. V. Stewart, B. Moghaddam, K. J. Hintz, and L. M. Novak, "Fractional Brownian motion models for synthetic aperture radar imagery scene segmentation," Proc. IEEE, vol. 81, pp. 1511-1522, 1993.
  29. M. Coltelli, G. Fornaro, G. Franceschetti, R. Lanari, M. Migliaccio, J. R. Moreira, K. P. Papathanassiou, G. Puglisi, D. Riccio, and M. Schwäbisch, "SIR-C/X-SAR multifrequency multipass interferometry: A new tool for geological interpretation," J. Geophys. Res., vol. 101, pp. 23127-23148, 1996.