1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 9, September 1999

Table of Contents for this issue

Complete paper in PDF format

Interaction Effects in Two-Dimensional Bianisotropic Arrays

Constantin R. Simovski, Member, IEEE, Michael S. Kondratjev, Pavel A. Belov, and Sergei A. Tretyakov, Senior Member, IEEE

Page 1429.

Abstract:

Electromagnetic excitation of two-dimensional (2-D) arrays of bianisotropic particles by plane waves is considered. Arrays (grids) are assumed to be infinite and the particles to be small compared to the wavelength, so that the dipole approximation is possible. The elecromagnetic interaction between all the particles changes the properties of these particles (in particular, chiral and omega particles are studied). The analytical model under consideration allows to express the electric and magnetic moments induced in each particle through the incident wave fields in terms of collective polarizability dyadics (CPD's). The proposed method to evaluate these dyadics combines numerical and analytical parts. The results of the calculations of the induced electric and magnetic moments by plane waves are presented for a planar arrangement of omega particles.

References

  1. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media.Boston, MA: Artech House, 1994.
  2. M. M. I. Saadoun and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or \Omega medium," Microwave Opt. Tech. Lett., vol. 5, pp. 184-188, 1992.
  3. S. A. Tretyakov, C. R. Simovski, F. Mariotte, T. G. Kharina, and S. Bolioli, "Scattering by omega-shaped conductive particle and omega composites modeling," Proc. URSI Int. Symp. Electromagn. Theory, St. Petersburg, Russia, 1995, pp. 621-623.
  4. S. A. Tretyakov, C. R. Simovski, F. Mariotte, T. G. Kharina, and J. P. Heliot, "Antenna model for chiral scatterers: comparison with numerical and experimental results," IEEE Trans. Antennas Propagat., vol. 44, pp. 1006-1014, July 1996.
  5. W. S. Weiglhofer, A. Lakhtakia, and J. C. Monzon, "Maxwell-Garnett model for composites of electrically small uniaxial objects," Microwave Opt. Technol. Lett., vol. 6, no. 12, pp. 681-684, 1993.
  6. K. W. Whites and C. Y. Chung, "Composite uniaxial bianisotropic chiral material: comparison of predicted and measured scattering," J. Electromagn. Waves Applicat., vol. 11, no. 3, pp. 371-394, 1997.
  7. L. R. Arnaut and L. E. Davis,"Mutual coupling between bianisotropic particles: A theoretical study," PIER 16, Monograph Ser., J. Kong, Ed.Cambridge: EMW, 1997, pp. 35-66.
  8. A. A. Sochava, C. R. Simovski, and S. A. Tretyakov, "Chiral effects and eigenwaves in bianisotropic omega structures," in Advances in Complex Electromagnetic Materials, A. Priou, A. Sihvola, S. Tretyakov, and A. Vinogradov, Eds.Boston, MA: Kluwer, 1997, pp. 85-102.
  9. R. C. Hansen, Microwave Scanning Antennas.New York: Academic, 1966, vol. 2.
  10. P. L. Kalantarov and L. A. Tseitlin, Calculations of Inductances.Moscow, Russia: Nauka, 1962, pp. 162-180 (in Russian).
  11. C. R. Simovski, S. A. Tretyakov, A. A. Sochava, B. Sauviac, F. Mariotte, and T. G. Kharina, "Antenna model for conductive omega particles," J. Electromagn. Waves Applicat.., vol. 11, pp. 1509-1530, 1997.
  12. Y. K. Muraviev, Antennas.Moscow, Russia: Sovetskoe Radio, 1961, pp. 48-57, vol. 1 (in Russian).
  13. C. R. Simovski, S. A. Tretyakov, B. Sauviac, and D. Y. Khaliullin, "Electromagnetic interaction of small chiral particles," Int. J. Electron. Communicat. (AEÜ), vol. 52, no. 1, pp. 25-31, 1998.