1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 10, October 1999

Table of Contents for this issue

Complete paper in PDF format

Generalized Material Models in TLM--Part I: Materials with Frequency-Dependent Properties

John Paul, Christos Christopoulos, and David W. P. Thomas, Member, IEEE

Page 1528.

Abstract:

This paper presents the fundamentals of a unified approach for the treatment of general material properties in time-domain simulation based on transmission-line modeling (TLM). Linear frequency-dependent isotropic materials are dealt with in the first instance. The iteration schemes for one-dimensional (1-D) and three-dimensional (3-D) models are developed from Maxwell's curl equations and the constitutive relations. Results are presented showing the accuracy of this approach. In a companion paper, the approach is extended to the treatment of anisotropic materials.

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, May 1966.
  2. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.Norwood, MA: Artech House, 1995.
  3. P. B. Johns and R. L. Beurle, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix," Proc. Inst. Elect. Eng., vol. 118, no. 9, pp. 1203-1208, Sept. 1971.
  4. C. Christopoulos, The Transmission-Line Modeling Method: TLM.Piscataway, NJ: IEEE Press, 1995.
  5. J. A. Kong, Electromagnetic Wave Theory.New York: Wiley, 1986.
  6. J. Paul, C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM--Part 2: Materials with anisotropic properties," IEEE Trans. Antennas Propagat., this issue, pp. 1535-1542.
  7. L. de Menezes and W. J. R. Hoefer, "Modeling of general constitutive relationships using SCN TLM," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 854-861, June 1996.
  8. D. M. Sullivan, "Frequency dependent FDTD methods using Z-transform," IEEE Trans. Antennas Propagat., vol. 40, pp. 1223-1230, Oct. 1992.
  9. --, "Nonlinear FDTD formulations using Z transforms," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 676-682, Mar. 1995.
  10. --, "Z-transform theory and the FDTD method," IEEE Trans. Antennas Propagat., vol. 44, pp. 28-34, Jan. 1996.
  11. W. H. Weedon and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Trans. Antennas Propagat., vol. 45, pp. 401-410, Mar. 1997.
  12. R. J. Luebbers, F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propagat., vol. 39, pp. 29-34, Jan. 1991.
  13. R. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., vol. 32, pp. 222-227, Aug. 1990.
  14. D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., vol. 44, pp. 792-797, June 1996.
  15. P. Russer, P. P. M. So, and W. J. R. Hoefer, "Modeling of nonlinear active regions in TLM," IEEE Microwave Guided Wave Lett., vol. 1, pp. 10-13, Jan. 1991.
  16. P. B. Johns, "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., vol. 35, pp. 370-377, Apr. 1987.
  17. R. T. Stefani, C. J. Savant, B. Shahian, and G. H. Hostetter, Design of Feedback Control Systems.Orlando, FL: Saunders College Publ., 1994.