1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 10, October 1999
Table of Contents for this issue
Complete paper in PDF format
Generalized Material Models in TLM--Part I: Materials with Frequency-Dependent Properties
John Paul, Christos Christopoulos, and David W. P. Thomas, Member, IEEE
Page 1528.
Abstract:
This paper presents the fundamentals of a unified approach
for the treatment of general material properties in time-domain
simulation based on transmission-line modeling (TLM). Linear
frequency-dependent isotropic materials are dealt with in the first
instance. The iteration schemes for one-dimensional (1-D) and
three-dimensional (3-D) models are developed from Maxwell's curl
equations and the constitutive relations. Results are presented showing
the accuracy of this approach. In a companion paper, the approach is
extended to the treatment of anisotropic materials.
References
-
K. S. Yee, "Numerical solution of initial boundary value
problems involving Maxwell's equations in isotropic media,"
IEEE Trans. Antennas Propagat., vol.
AP-14, pp. 302-307, May 1966.
-
A. Taflove, Computational Electrodynamics: The
Finite-Difference Time-Domain Method.Norwood,
MA: Artech House, 1995.
-
P. B. Johns and R. L. Beurle, "Numerical solution of
2-dimensional scattering problems using a transmission-line
matrix," Proc. Inst. Elect.
Eng., vol. 118, no. 9, pp. 1203-1208, Sept.
1971.
-
C. Christopoulos, The Transmission-Line Modeling
Method: TLM.Piscataway, NJ: IEEE Press,
1995.
-
J. A. Kong, Electromagnetic Wave
Theory.New York: Wiley, 1986.
-
J. Paul, C. Christopoulos, and D. W. P. Thomas, "Generalized
material models in TLM--Part 2: Materials with anisotropic
properties," IEEE Trans. Antennas
Propagat., this issue, pp. 1535-1542.
-
L. de Menezes and W. J. R. Hoefer, "Modeling of general
constitutive relationships using SCN TLM," IEEE
Trans. Microwave Theory Tech., vol. 44, pp.
854-861, June 1996.
-
D. M. Sullivan, "Frequency dependent FDTD methods using
Z-transform," IEEE Trans. Antennas
Propagat., vol. 40, pp. 1223-1230, Oct.
1992.
-
--, "Nonlinear FDTD formulations using Z
transforms," IEEE Trans. Microwave Theory
Tech., vol. 43, pp. 676-682, Mar. 1995.
-
--, "Z-transform theory and the FDTD method,"
IEEE Trans. Antennas Propagat., vol.
44, pp. 28-34, Jan. 1996.
-
W. H. Weedon and C. M. Rappaport, "A general method for FDTD
modeling of wave propagation in arbitrary frequency-dispersive
media," IEEE Trans. Antennas
Propagat., vol. 45, pp. 401-410, Mar.
1997.
-
R. J. Luebbers, F. Hunsberger, and K. S. Kunz, "A
frequency-dependent finite-difference time-domain formulation for
transient propagation in plasma," IEEE Trans.
Antennas Propagat., vol. 39, pp. 29-34, Jan.
1991.
-
R. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M.
Schneider, "A frequency-dependent finite-difference time-domain
formulation for dispersive materials," IEEE
Trans. Electromagn. Compat., vol. 32, pp.
222-227, Aug. 1990.
-
D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive
convolution for dispersive media using FDTD,"
IEEE Trans. Antennas Propagat., vol.
44, pp. 792-797, June 1996.
-
P. Russer, P. P. M. So, and W. J. R. Hoefer, "Modeling of
nonlinear active regions in TLM," IEEE Microwave
Guided Wave Lett., vol. 1, pp. 10-13, Jan.
1991.
-
P. B. Johns, "A symmetrical condensed node for the TLM
method," IEEE Trans. Microwave Theory
Tech., vol. 35, pp. 370-377, Apr. 1987.
-
R. T. Stefani, C. J. Savant, B. Shahian, and G. H. Hostetter,
Design of Feedback Control
Systems.Orlando, FL: Saunders College Publ.,
1994.