1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 10, October 1999

Table of Contents for this issue

Complete paper in PDF format

Generalized Material Models in TLM--Part 2: Materials with Anisotropic Properties

John Paul, Christos Christopoulos, and David W. P. Thomas, Member, IEEE

Page 1535.

Abstract:

Transmission-line modeling (TLM) can be used for the time-domain simulation of electromagnetic wave propagation in anisotropic and bi-anisotropic media. In this paper, alZ -transform methods are utilized to obtain the time-domain iteration procedures for propagation in anisotropic and bi-isotropic materials. For clarity, the method is first developed for one-dimensional (1-D) propagation and then extended to the three-dimensional (3-D) case.

References

  1. J. Schneider and S. Hudson, "The finite-difference time-domain method applied to anisotropic material," IEEE Trans. Antennas Propagat., vol. 41, pp. 994-999, July 1993.
  2. F. Hunsberger, R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media--Part I: Magnetized plasma," IEEE Trans. Antennas Propagat., vol. 40, pp. 1489-1495, Dec. 1992.
  3. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.Boca Raton, FL: CRC, 1993.
  4. L. de Menezes and W. J. R. Hoefer, "Modeling of general constitutive relationships using SCN TLM," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 854-861, June 1996.
  5. S. Hein, "Synthesis of TLM algorithms in the propagator integral framework," in 2nd Int. Workshop Transmission-Line Matrix (TLM) Modeling Theory Applicat., Tech. Univ., Munich, Germany, Oct. 1997, pp. 1-11.
  6. --, "TLM numerical solution of Bloch's equations for magnetized gyrotropic media," Appl. Math. Modeling, vol. 21, pp. 221-229, Apr. 1997.
  7. J. Paul, C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM--Part 1: Materials with frequency-dependent properties," IEEE Trans. Antennas Propagat., this issue, pp. 1528-1534.
  8. J. A. Kong. Electromagnetic Wave Theory.New York: Wiley, 1986.
  9. P. B. Johns, "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., vol. 35, pp. 370-377, Apr. 1987.
  10. R. J. Luebbers and F. Hunsberger, "FDTD for nth-order dispersive media," IEEE Trans. Antennas Propagation, vol. 40, pp. 1297-1301, Nov. 1992.
  11. S. V. Vonsovskii. Ferromagnetic Resonance.New York: Pergamon, 1966.
  12. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media.Norwood MA: Artech House, 1994.
  13. A. H. Sihvola, "Temporal dispersion in chiral composite materials: A theoretical study," J. Electromagn. Waves Applicat., vol. 6, pp. 1177-1196, 1993.
  14. V. L. Ginzburg. The Propagation of Electromagnetic Waves in Plasmas.New York: Pergamon, 1970.
  15. B. Lax and K. J. Button. Microwave Ferrites and Ferrimagnetics.New York: McGraw-Hill, 1962.