1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 10, October 1999
Table of Contents for this issue
Complete paper in PDF format
Generalized Material Models in TLM--Part 2:
Materials with Anisotropic Properties
John Paul, Christos Christopoulos, and David W. P. Thomas, Member, IEEE
Page 1535.
Abstract:
Transmission-line modeling (TLM) can be used for the
time-domain simulation of electromagnetic wave propagation in
anisotropic and bi-anisotropic media. In this paper,
alZ -transform methods are utilized to obtain the
time-domain iteration procedures for propagation in anisotropic and
bi-isotropic materials. For clarity, the method is first developed for
one-dimensional (1-D) propagation and then extended to the
three-dimensional (3-D) case.
References
-
J. Schneider and S. Hudson, "The finite-difference
time-domain method applied to anisotropic material,"
IEEE Trans. Antennas Propagat., vol.
41, pp. 994-999, July 1993.
-
F. Hunsberger, R. Luebbers, and K. Kunz, "Finite-difference
time-domain analysis of gyrotropic media--Part I: Magnetized
plasma," IEEE Trans. Antennas
Propagat., vol. 40, pp. 1489-1495, Dec.
1992.
-
K. S. Kunz and R. J. Luebbers, The Finite
Difference Time Domain Method for
Electromagnetics.Boca Raton, FL: CRC,
1993.
-
L. de Menezes and W. J. R. Hoefer, "Modeling of general
constitutive relationships using SCN TLM," IEEE
Trans. Microwave Theory Tech., vol. 44, pp.
854-861, June 1996.
-
S. Hein, "Synthesis of TLM algorithms in the propagator
integral framework," in 2nd Int. Workshop
Transmission-Line Matrix (TLM) Modeling Theory
Applicat., Tech. Univ., Munich, Germany, Oct. 1997,
pp. 1-11.
-
--, "TLM numerical solution of Bloch's equations for
magnetized gyrotropic media," Appl. Math.
Modeling, vol. 21, pp. 221-229, Apr. 1997.
-
J. Paul, C. Christopoulos, and D. W. P. Thomas, "Generalized
material models in TLM--Part 1: Materials with frequency-dependent
properties," IEEE Trans. Antennas
Propagat., this issue, pp. 1528-1534.
-
J. A. Kong. Electromagnetic Wave
Theory.New York: Wiley, 1986.
-
P. B. Johns, "A symmetrical condensed node for the TLM
method," IEEE Trans. Microwave Theory
Tech., vol. 35, pp. 370-377, Apr. 1987.
-
R. J. Luebbers and F. Hunsberger, "FDTD for
nth-order dispersive media," IEEE
Trans. Antennas Propagation, vol. 40, pp.
1297-1301, Nov. 1992.
-
S. V. Vonsovskii. Ferromagnetic
Resonance.New York: Pergamon, 1966.
-
I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen,
Electromagnetic Waves in Chiral and Bi-Isotropic
Media.Norwood MA: Artech House, 1994.
-
A. H. Sihvola, "Temporal dispersion in chiral composite
materials: A theoretical study," J. Electromagn.
Waves Applicat., vol. 6, pp. 1177-1196,
1993.
-
V. L. Ginzburg. The Propagation of Electromagnetic
Waves in Plasmas.New York: Pergamon,
1970.
-
B. Lax and K. J. Button. Microwave Ferrites and
Ferrimagnetics.New York: McGraw-Hill,
1962.