1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 10, October 1999

Table of Contents for this issue

Complete paper in PDF format

Target Identification with Wave-Based Matched Pursuits and Hidden Markov Models

Priya K. Bharadwaj, Paul R. Runkle, and Lawrence Carin, Senior Member, IEEE

Page 1543.

Abstract:

The method of matched pursuits is an algorithm by which a waveform is parsed into its fundamental constituents here, in the context of short-pulse electromagnetic scattering, wavefronts, and resonances (constituting what we have called wave-based matched pursuits). The wave-based matched-pursuits algorithm is used to develop a codebook of features that are representative of time-domain scattering from a target of interest, accounting for the variability of such as a function of target-sensor orientation. This codebook is subsequently used in the context of a hidden Markov model (HMM) in which the probability of measuring a particular codebook element is quantified as a function of target-sensor orientation. We review the wave-based matched-pursuits algorithm and its use in the context of an HMM (for target identification). Finally, this new wave-based signal processing algorithm is demonstrated with simulated scattering data, with additive noise.

References

  1. C. E. Baum, "The singularity expansion method," in Transient Electromagnetic Fields, L. B. Felsen, Ed.New York: Springer-Verlag, 1976.
  2. E. Heyman and L. B. Felsen, "A wavefront interpretation of the singularity expansion method," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 706-718, July 1985.
  3. K.-M. Chen, D. P. Nyquist, E. J. Rothwell, L. L. Webb, and B. Drachman, "Radar target discrimination by convolution of radar return with extinction-pulses and single-mode extraction signals," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 896-904, July 1986.
  4. A. J. Poggio, M. L. Van Blaricum, E. K. Miller, and R. Mittra, "Evaluation of a processing technique for transient data," IEEE Trans. Antennas Propagat., vol. AP-26, pp. 165-173, Jan. 1978.
  5. J. B. Keller, "Geometrical theory of diffraction," J. Opt. Soc. Amer., vol. 52, pp. 116-130, Feb. 1962.
  6. M. McClure, R. C. Qiu, and L. Carin, "On the super-resolution identification of observables from swept-frequency scattering data," IEEE Trans. Antennas Propagat., vol. 45, pp. 631-641, Apr. 1997.
  7. R. A. Atles, "Sonar for generalized target description and it's similarity to animal echolocation systems," J. Acoust. Soc. Amer., vol. 59, pp. 97-105, Jan. 1976.
  8. M. P. Hurst and R. Mittra, "Scattering center analysis via Prony's method," IEEE Trans. Antennas Propagat., vol. AP-35, pp. 986-988, Aug. 1987.
  9. R. Carrierre and R. L. Moses, "High resolution parametric modeling of canonical radar scatterers with application to target identification," IEEE Trans. Antennas Propagat., vol. 40, pp. 13-18, Jan. 1992.
  10. W. M. Steedly and R. L. Moses, "High resolution exponential modeling of fully polarized radar returns," IEEE Trans. Aerosp. Electron. Syst., vol. 27, pp. 459-469, May 1991.
  11. A. Moghaddar and E. K. Walton, "Time-frequency distribution analysis of scattering from waveguide cavities," IEEE Trans. Antennas Propagat., vol. 41, pp. 677-680, May 1993.
  12. H. Kim and H. Ling, "Wavelet analysis of back-scattering data from an open-ended waveguide cavity," IEEE Microwave Guided Wave Lett., vol. 2, p. 140-142, Apr. 1992.
  13. D. R. Kralj, M. McClure, L. Carin, and L. B. Felsen, "Time domain wave-oriented data processing for scattering by nonuniform truncated gratings," J. Opt. Soc. Amer., vol. 11, pt. A, pp. 2685-2694, Oct. 1994.
  14. G. C. Gaunaurd, H. C. Strifors, A. Abrahamsson, and B. Brusmark, "Scattering of short EM-pulses by simple and complex targets using impulse radar," in Ultra-Wideband Short-Pulse Electromagnetics, H. L. Bertoni, L. Carin, and L. B. Felsen, Eds.New York: Plenum, 1993, pp. 437-444.
  15. L. Carin and L. B. Felsen, "Wave-oriented data processing for frequency and time domain scattering by nonuniform truncated array," IEEE Antennas Propagat. Mag., vol. 36, pp. 29-43, June 1994.
  16. H. Kim and H. Ling, "Wavelet analysis of radar echo from finite size targets," IEEE Trans. Antennas Propagat., vol. 41, pp. 200-207, Feb. 1993.
  17. L. Carin, L. B. Felsen, D. R. Kralj, H. S. Oh, W. C. Lee, and S. U. Pillai, "Wave-oriented data processing of dispersive time-domain scattering data," IEEE Microwave Guided Wave Lett., vol. 45, pp. 592-600, Apr. 1997.
  18. M. McClure and L. Carin, "Matched pursuits with a wave-based dictionary," IEEE Trans. Signal Processing, vol. 45, pp. 2912-2927, Dec. 1997.
  19. L. C. Trintinalia and H. Ling, "Joint time-frequency ISAR using adaptive processing," IEEE Trans. Antennas Propagat., vol. 45, pp. 221-227, Feb. 1997.
  20. S. G. Mallat and Z. Zhang, "Matched pursuits with time-frequency dictionaries," IEEE Trans. Signal Processing, vol. 41, pp. 3397-3415, Dec. 1993.
  21. S. E. Levinson, " Structural methods in automatic speech recognition," Proc. IEEE, vol. 73, pp. 1625-1650, Nov. 1985.
  22. L. R. Rabiner and B. H. Juang, "An introduction to hidden Markov models," IEEE Acoust., Speech, Signal Processing Mag, vol. 3, pp. 4-16, Jan. 1986.
  23. L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc. IEEE, vol. 77, pp. 257-285, Feb. 1989.
  24. J. Picone, "Continuous speech recognition using hidden Markov models," IEEE Acoust., Speech, Signal Processing Mag., vol. 7, pp. 26-41, July 1990.
  25. S. Young, "A review of large-vocabulary continuous speech recognition," IEEE Signal Processing Mag., vol. 13, pp. 45-57, Sept. 1996.
  26. S. E. Levinson, "Continuously variable duration hidden Markov models for automatic speech recognition," Comput, Speech, Language, vol. 1, pp. 29-45, Mar. 1986.
  27. C. H. Lee and L. R. Rabiner, "A frame-synchronous network search algorithm for connected word recognition," IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1649-1658, Nov. 1989.
  28. R. Bakis, "Continuous speech word recognition via centisecond acoustic states," in Proc. 91st Annu. Meet. Acoustical Soc. Amer., Washington, DC, 1976.
  29. B. S. Atal, "Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification," J. Acoust. Soc. Amer., vol. 55, pp. 1304-1312, 1974.
  30. J. A. Simmons, P. A. Saillant, and S. P. Dear, "Through a bat's ear," IEEE Spectrum, vol. 29, pp. 46-48, Mar. 1992.
  31. J. A. Simmons, M. Ferragamo, C. F. Moss, S. B. Stevenson, R. A. Altes, "Discrimination of jittered sonar echoes by the echo-locating bat, Eptesicus fuscus: The shape of target images in echolocation," J. Comp. Physiol. A, vol. 267, pp. 589-616, 1990.
  32. J. A. Simmons, "A view of the world through the bat's ear: The formation of acoustic images in echolocation," Cognition, vol. 33, pp. 155-199, 1989.
  33. R. O. Harger, Synthetic Aperture Radar Systems.New York: Academic, 1970, pp. 104-107.
  34. J. L. Walker, "Range-Doppler imaging of rotating objects," IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, pp. 23-52, Jan. 1980.
  35. W. C. Chew, Waves and Fields in Inhomogeneous MediaNew York: Oxford, 1996, ch. 9.
  36. S. Grossberg, H. Hawkins, and A. Waxman, Eds., Neural Networks, Special Issue: Neural Network for ATR, vol. 8, 1995.
  37. M. McClure and L. Carin, "Wave-based matching-pursuits detection of submerged elastic targets," J. Acoust. Soc. Amer., vol. 104, pt. 1, pp. 937-946, Aug. 1998.
  38. J. Makhoul, S. Raucos, and H. Gish, "Vector quantization in speech coding," Proc. IEEE, vol. 73, pp. 1551-1558, Nov. 1985.
  39. Y. Linde, A. Buzo, and R. M. Gray, "An algorithm for vector quantizer design," IEEE Trans. Communicat., vol. 28, pp. 84-95, Jan. 1980.
  40. J. Deller, J. Proakis, and J. Hansen, Discrete-Time Processing of Speech Signals.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  41. L. L. Scharf, Statistical Signal Processing, Detection, Estimation, and Time Series Analysis.New York: Addison-Wesley, 1990.
  42. P. R. Runkle, P. K. Bharadwaj, L. Couchman, and L. Carin, "Hidden Markov models for multiaspect target classification," IEEE Trans. Signal Processing, vol. 47, pp. 2035-2040, July 1999.
  43. L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains," Ann. Math. Statistics, vol. 41, pp. 164-171, 1970.
  44. A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, Apr. 1967.
  45. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.Boca Raton, FL: CRC, 1993.
  46. A. Taflove, Computational Electrodynamics; The Finite-Difference Time-Domain Method.Norwood, MA: Artech House, 1995.