1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 11, November 1999

Table of Contents for this issue

Complete paper in PDF format

Electric-Dipole Radiation over a Wedge with Imperfectly Conductive Faces: A First-Order Physical-Optics Solution

Athanasios I. Papadopoulos, Student Member, IEEE, and Dimitrios P. Chrissoulidis, Member, IEEE

Page 1649.

Abstract:

We solve a three-dimensional (3-D) electromagnetic diffraction problem involving an obtuse wedge with penetrable planar faces and an electric dipole which is parallel to the edge of the wedge. The analytical formulation is based on Stratton-Chu integrals of the electromagnetic field, which is excited by the dipole source on infinitely extending planes that coincide with the faces of the wedge. Fictitious charges are introduced along the edge to account for the discontinuity of the electromagnetic field on the faces across the edge. We evaluate asymptotically the integral expressions for the electric-field intensity far from the edge to obtain uniformly valid formulas. Our first-order physical-optics solution incorporates single reflection from both faces, the lateral wave, the edge-diffracted space wave, the edge-diffracted lateral wave, and transition terms which ensure that the electromagnetic field is finite and continuous at the single-reflection and lateral-wave boundaries. The numerical results establish the validity of this solution through a reciprocity check and comparisons with other analytical solutions.

References

  1. G. D. Maliuzhinets, "Excitation, reflection and emission of surface waves from a wedge with given face impedances," Sov. Phys. Dokl., vol. 3, pp. 752-755, 1958.
  2. R. Tiberio, G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 867-873, Aug. 1985.
  3. T. Griesser and C. A. Balanis, "Reflections, diffractions, and surface waves for an interior impedance wedge of arbitrary angle," IEEE Trans. Antennas Propagat., vol. 37, pp. 927-935, July 1989.
  4. S. Sanyal and A. K. Bhattacharyya, "Diffraction by a half-plane with two face impedances, uniform asymptotic expansion for plane wave and arbitrary line source incidence," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 718-723, May 1986.
  5. R. Tiberio, G. Pelosi, G. Manara, and P. H. Pathak, "High-frequency scattering from a wedge with impedance faces illuminated by a line source, part I: Diffraction," IEEE Trans. Antennas Propagat., vol. 37, pp. 212-218, Feb. 1989.
  6. G. Pelosi, R. Tiberio, and R. G. Rojas, "Electromagnetic field excited by a line source placed at the edge of an impedance wedge," IEEE Trans. Antennas Propagat., vol. 39, pp. 1043-1046, July 1991.
  7. G. Manara, R. Tiberio, G. Pelosi, and P. H. Pathak, "High-frequency scattering from a wedge with impedance faces illuminated by a line source--Part II: Surface waves," IEEE Trans. Antennas Propagat., vol. 41, pp. 877-883, July 1993.
  8. M. F. Otero and R. G. Rojas, "Two-dimensional Green's function for a wedge with impedance faces," IEEE Trans. Antennas Propagat., vol. 45, pp. 1799-1809, Dec. 1997.
  9. T. B. A. Senior, "Diffraction tensors for imperfectly conducting edges," Radio Sci., vol. 10, no. 10, pp. 911-919, Oct. 1975.
  10. T. B. A. Senior, "Skew incidence on a right-angled impedance wedge," Radio Sci., vol. 13, no. 4, pp. 639-647, July/Aug. 1978.
  11. T. B. A. Senior, "Solution of a class of imperfect wedge problems for skew incidence," Radio Sci., vol. 21, no. 2, pp. 185-191, Mar./Apr. 1986.
  12. O. M. Bucci and G. Franceschetti, "Electromagnetic scattering by a half-plane with two face impedances," Radio Sci., vol. 11, no. 1, pp. 49-59, Jan. 1976.
  13. J. L. Volakis, "A uniform geometrical theory of diffraction for an imperfectly conducting half-plane," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 172-180, Feb. 1986.
  14. T. B. A. Senior and J. L. Volakis, "Scattering by an imperfect right-angled wedge," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 681-689, May 1986.
  15. R. G. Rojas, "Wiener-Hopf analysis of the EM diffraction by an impedance discontinuity in a planar surface and by an impedance half-plane," IEEE Trans. Antennas Propagat., vol. 36, pp. 71-83, Jan. 1988.
  16. R. G. Rojas, "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antennas Propagat., vol. 36, pp. 956-970, July 1988.
  17. G. Pelosi, S. Maci, R. Tiberio, and A. Michaeli, "Incremental length diffraction coefficients for an impedance wedge," IEEE Trans. Antennas Propagat., vol. 40, pp. 1201-1210, Oct. 1992.
  18. C. Demeterscu, "A general solution of the second-order difference equation occurring in diffraction theory," Radio Sci., vol. 31, no. 3, pp. 461-467, May-June 1996.
  19. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, vol. 62, pp. 1448-1461, Nov. 1974.
  20. K. A. Chamberlin and R. J. Luebbers, "An evaluation of Longley-Rice and GTD propagation models," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 1093-1098, Nov. 1982.
  21. W. D. Burnside and K. W. Burgener, "High frequency scattering by a thin lossless dielectric slab," IEEE Trans. Antennas Propagat., vol. AP-31, pp. 104-110, Jan. 1983.
  22. R. J. Luebbers, "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 70-76, Jan. 1984.
  23. C. S. Joo, J. W. Ra, and S. Y. Shin, "Scattering by right angle dielectric wedge," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 61-69, Jan. 1984.
  24. S. Y. Kim, J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge: Part I--Physical optics approximation," IEEE Trans. Antennas Propagat., vol. 39, pp. 1272-1281, Sept. 1991.
  25. S. Y. Kim, J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge: Part II--Correction to physical optics solution," IEEE Trans. Antennas Propagat., vol. 39, pp. 1282-1292, Sept. 1991.
  26. L. M. Brekhovskikh, Waves in Layered Media.New York: Academic, 1960.
  27. R. J. Luebbers, "Comparison of lossy wedge diffraction coefficients with application to mixed path propagation loss prediction," IEEE Trans. Antennas Propagat., vol. 36, pp. 1031-1034, July 1988.
  28. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering.Englewood Cliffs, NJ: Prentice-Hall, 1991.
  29. A. Ban˜os Jr., Dipole Radiation in the Presence of a Conducting Half-Space.Oxford, U.K.: Pergamon, 1966.
  30. J. A. Stratton, Electromagnetic Theory.New York: McGraw-Hill, 1941.
  31. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.Englewood Cliffs, NJ: Prentice-Hall, 1973.
  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.New York: Dover, 1970.