1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 12, December 1999

Table of Contents for this issue

Complete paper in PDF format

Coordinate-Independent Dyadic Formulation of the Dispersion Relation for Bianisotropic Media

Eng Leong Tan and Soon Yim Tan

Page 1820.

Abstract:

This paper presents a coordinate-independent dyadic formulation of the dispersion relation for general bianisotropic media. The dispersion equation is expanded with the aid of dyadic operators including double-dot, double-cross and dot-cross or cross-dot products. From the dispersion relation, the Booker quartic equation is derived in a form well-suited for studying multilayered structures. Several deductions are made in conjunction with the bianisotropic media satisfying reciprocity and losslessness conditions. In particular, for reciprocal bianisotropic media, the dispersion equation is biquadratic in wave vector while for lossless bianisotropic media, all dispersion coefficients are of real values. As an application example, the dispersion equation for gyrotropic bianisotropic media is considered in detail.

References

  1. T. W. Johnston, "Plane-wave dispersion in gyrotropic media," Radio Sci., vol. 4, no. 8, pp. 729-732, 1969.
  2. I. V. Lindell, "Wave normal and ray propagation in lossless positive bianisotropic media," Acta Polytechnica Scandinavica, Elect. Eng. Ser. El31, Helsinki, Finland, 1972.
  3. --, "Coordinate independent dyadic formulation of wave normal and ray surfaces of general anisotropic media," J. Math Phys., vol. 14, no. 1, pp. 65-67, 1973.
  4. H. C. Chen, "A coordinate-free approach to wave reflection from an anisotropic medium," Radio Sci., vol. 16, no. 6, pp. 1213-1215, 1981.
  5. --, Theory of Electromagnetic Waves--A Coordinate-Free Approach.New York: McGraw-Hill, 1983.
  6. R. D. Graglia, P. L. E. Uslenghi, and R. E. Zich, "Dispersion relation for bianisotropic materials and its symmetry properties," IEEE Trans. Antennas Propagat., vol. 39, pp. 83-90, Jan. 1991.
  7. J. A. Kong, Electromagnetic Wave Theory.New York: Wiley, 1990.
  8. I. V. Lindell, Methods for Electromagnetic Field Analysis.Oxford, U.K.: Clarendon, 1992.
  9. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media.London, U.K.: Artech House, 1994.
  10. N. Engheta, D. L. Jaggard, and M. W. Kowarz, "Electromagnetic waves in Faraday chiral media," IEEE Trans. Antennas Propagat., vol. 40, pp. 367-374, Apr. 1992.
  11. I. V. Lindell, S. A. Tretyakov, and A. J. Viitanen, "Plane-wave propagation in a uniaxial chiro-omega medium," Microwave Opt. Technol. Lett., vol. 6, no. 9, pp. 517-520, 1993.
  12. S. A. Tretyakov and A. A. Sochava, "Eigenwaves in uniaxial chiral omega media," Microwave Opt. Technol. Lett., vol. 6, no. 12, pp. 701-703, 1993.
  13. I. V. Lindell and A. J. Viitanen, "Plane wave propagation in uniaxial bianisotropic medium," Electron. Lett., vol. 29, no. 2, pp. 150-151, 1993.
  14. I. V. Lindell, A. J. Viitanen, and P. K. Koivisto, "Plane-wave propagation in transversely bianisotropic uniaxial medium," Microwave Opt. Technol. Lett., vol. 6, no. 8, pp. 478-481, 1993.
  15. P. G. Cottis, "Radiation in an unbounded gyroelectric medium," J. Electromagn. Waves Applicat., vol. 12, no. 2, pp. 249-268, 1998.
  16. E. L. Tan and S. Y. Tan, "On the eigenfunction expansions of the dyadic Green's functions for bianisotropic media," Progress Electromagn. Res., PIER 20, pp. 227-247, 1998.
  17. J. L. Tsalamengas, "Electromagnetic fields of elementary dipole antennas embedded in stratified general gyrotropic media," IEEE Trans. Antennas Propagat., vol. 37, pp. 399-403, Mar. 1989.