2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Problem-Matched Basis Functions for Moment Method Analysis- An Application to Reflection Gratings

C. K. Aanandan, Pierluigi Debernardi, Renato Orta, Senior Member, IEEE Riccardo Tascone and Daniele Trinchero Member, IEEE

Page 35.

Abstract:

In the evaluation of the frequency response of a scattering object by the integral equation technique, generally a large linear system of equations has to be solved for each frequency point. This paper deals with a technique that drastically reduces the size of the linear system without loss of accuracy. The key point is the definition of a set of problem-matched basis functions. These basis functions are extremely efficient in the representation of the unknown in the parameter range of interest. In this way, the central processing unit (CPU) time required in the response evaluation is drastically reduced. Examples of application concerning reflection gratings are reported.

References

  1. S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by a surface of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, no.  3, pp.  409-418, May  1982.
  2. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, New York: MacMillan, 1971.
  3. G. Vecchi, P. Pirinoli, L. Matekovits and M. Orefice, "A reduced representation of the frequency-response of printed antennas", Int. J. Microwave Millimeter-Wave Comput.-Aided Engrg., vol. 6, no. 7, pp.  432-441, Nov.  1997.
  4. A. G. Tijhuis and Z. Q. Peng, "Marching-on-in-frequency method for solving integral equations in transient electromagnetic scattering", in Inst. Elect. Eng. Proc.-Pt. H, vol. 138, Aug. 1991, pp.  347 -355. 
  5. R. Orta, R. Tascone and R. Zich, "A unified formulation for the analysis of general frequency selective surfaces", Electromagn., vol. 5, no.  4, pp.  307-329, 1985.
  6. R. Orta, P. Savi and R. Tascone, "Multiple frequency selective surfaces consisting of ring patches", Electromagn., vol. 15, no. 4, pp.  417 -426, 1995.
  7. G. H. Golub and C. F. Van Loan, Matrix Computation, Baltimore, MD: John Hopkins Univ. Press, 1983.
  8. F. S. Johanson, L. R. Lagerholm and P. S. Kildal, "Frequency scanned reflection gratings with integrated polarizer", IEEE Trans. Antennas Propagat., vol. 40, pp.  331-334,  Mar.  1992.
  9. D. S. Stephen, T. Mathew, P. Mohanan and K. G. Nair, "A modified strip grating with dual periodicity for rcs reduction", Microwave Opt. Technol. Lett., vol. 7, no. 7, pp.  315-317, Oct.  1994.
  10. J. C. Coetzee and J. A. G. Malherbe, "Efficient matrix element calculations for the spectral domain method applied to symmetrical multiconductor transmission lines", Appl. Computat. Electromagn. Soc. J., vol. 9, no. 1, pp.  40-50, Mar.  1994.
  11. L. Accatino, G. Bertin and M. Mongiardo, "Elliptical cavity resonators for dual-mode narrow-band filters", IEEE Trans. Microwave Theory Tech., vol. 45 , pp.  2392-2401, Dec.  1997.
  12. H. Auda and R. Harrington, "A moment solution for waveguide junction problems", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  515-520, July  1983.