2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Frequency-Domain Green's Function for a Planar Periodic Semi-Infinite Phased Array-Part I: Truncated Floquet Wave Formulation

Filippo Capolino, Member, IEEE Matteo Albani, Student Member, IEEE Stefano Maci, Senior Member, IEEE and Leopold B. Felsen Life Fellow, IEEE

Page 67.

Abstract:

This two-part sequence deals with the derivation and physical interpretation of a uniform high-frequency solution for the field radiated at finite distance by a planar semi-infinite phased array of parallel elementary electric dipoles. The field obtained by direct summation over the contributions from the individual radiators is restructured into a double series of wavenumber spectral integrals whose asymptotic reduction yields a series encompassing propagating and evanescent Floquet waves (FW's) together with corresponding diffracted rays, which arise from scattering of the FW at the edge of the array. The formal aspects of the solution are treated in the present paper (Part I). They involve a sequence of manipulations in the complex spectral wavenumber planes that prepare the integrands for subsequent efficient and physically incisive asymptotics based on the method of steepest descent. Different species of spectral poles define the various species of propagating and evanescent FW. Their interception by the steepest descent path (SDP) determines the variety of shadow boundaries for the edge truncated FW. The uniform asymptotic reduction of the SDP integrals, performed by the Van der Waerden procedure and yielding a variety of edge-diffracted fields, completes the formal treatment. The companion paper (Part II ) deals with the phenomenology of these local diffracted waves based on the present formal solution. The phenomenology encompasses all possible contributions of propagating and evanescent edge diffractions excited by propagating and evanescent FW's. The outcome is a physically appealing and accurate high-frequency algorithm, which is numerically efficient due to the rapid convergence of both the FW series and the series of relevant diffracted fields. This is demonstrated by numerical examples for radiation from a strip array in Part II.

References

  1. F. Capolino, M. Albani, S. Maci and L. B. Felsen, "Frequency domain Green's function for a planar periodic semi-infinite phased array-Part II: Diffracted wave phenomenology", IEEE Trans. Antennas Propogat., pp.  75-85, this issue  
  2. A. A. Ishimaru, R. G. Coe, G. E. Miller and W. P. Geren, "Finite periodic approach to large scanning array problems", IEEE Trans. Antennas Propagat., vol. AP-33 , pp.  1213-1220, Nov.  1985.
  3. A. K. Skrivervik and J. R. Mosig, "Finite phased array of microstrip patch antennas: The infinite array approach", IEEE Trans. Antennas Propagat., vol. 40, pp.  579-582, May  1992.
  4. Amitay, W. Galindo and C. P. Wu, Theory and Analysis of Phased Array Antennas , New York: Wiley, 1972.
  5. L. B. Felsen and L. Carin, "Frequency and time domain bragg-modulated acoustic for truncated periodic array", J. Acoust. Soc. Amer., vol. 95, no. 2, pp.  638-649, Feb.  1994.
  6. L. Carin and L. B. Felsen, "Time harmonic and transient scattering by finite periodic flat strip arrays: Hybrid (Ray)-(Floquet mode)-(MoM) algorithm ", IEEE Trans. Antennas Propagat., vol. 41, pp.  412-421, Apr.  1993.
  7. L. Felsen and L. Carin, "Diffraction theory of frequency-and time-domain scattering by weakly aperiodic truncated thin-wire gratings", J. Opt. Soc. Amer., vol. 11, no. 4, pp.  1291-1306 , Apr.   1994.
  8. L. Carin, L. B. Felsen and T.-T. Hsu, "High-frequency fields excited by truncated arrays of nonuniformly distibuted filamentary scatterers on an infinite dielectric grounded slab: Parametrizing (leaky mode)-(Floquet mode) interaction", IEEE Trans. Antennas Propagat., vol. 44, pp.  1-11, January  1996 .
  9. F. Capolino, M. Albani, S. Maci and R. Tiberio, "High-frequency analysis of an array of line sources on a truncated ground-plane", IEEE Trans. Antennas Propagat., vol. 44, pp.  570-578, Apr.  1998.
  10. F. Capolino, M. Albani, A. Neto, S. Maci and L. B. Felsen, "Vertex-diffracted Floquet waves at a corner array of dipoles", in Int. Conf. Electromagn. Adv. Applicat. (ICEAA), Turin, Italy,Sept. 1997.
  11. F. Capolino, S. Maci and L. B. Felsen, "Green's function for a planar phased sectoral array of dipoles", Invited Paper-Radio Sci.,
  12. S. Maci, F. Capolino and L. B. Felsen, "Three-dimensional Green's function for truncated planar periodic dipole arrays", Invited Paper-Wave Motion,
  13. F. Capolino and S. Maci, "Uniform high-frequency description of singly, doubly and vertex diffracted rays for a plane angular sector", J. Electromagn. Waves Applicat., vol. 10, pp.  1175- 1197, Oct.  1996.
  14. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, New York: Prentice-Hall/IEEE Press, 1994.
  15. B. L. Van der Waerden, "On the method of saddle points", Appl. Sci. Res., vol. B2, pp.  33- 45, 1951.
  16. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface", in Proc. IEEE, vol. 62, Nov. 1974, pp.  1448-1461. 
  17. R. Rojas, "Comparison between two asymptotic methods", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1489-1492, Dec.  1987.
  18. P. C. Clemmow, Plane Wave Spectrum Representation of Electromagnetic Fields, London: U.K.: Pergamon, 1966.