2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 1, January 2000

Table of Contents for this issue

Complete paper in PDF format

Artificial versus Natural Crystals: Effective Wave Impedance of Printed Photonic Bandgap Materials

Chryssoula A. Kyriazidou , Member, IEEE Harry F. Contopanagos , Member, IEEE William M. Merrill , Student Member, IEEE and Nicólaos G. Alexópoulos Fellow, IEEE

Page 95.

Abstract:

Printed metallo-dielectric photonic bandgap (PBG) materials are analyzed using an analytical approach based on multipole expansions for the scattered fields off individual scatterers and a transfer-matrix method for reconstructing the total scattered fields created by successive lattice planes of the artificial crystal. An effective description of the PBG medium is derived and its correspondence with natural crystals is further advanced through an analysis based on Lorentzian response functions, which characterize natural crystals. The effective wave impedance and bulk reflection coefficient of the medium are provided and their properties inside and outside the bandgaps are examined. The presented treatment for these effective response functions extends far beyond the traditional effective medium theory (EMT) limits.

References

  1. C. M. Soukoulis, Ed. Photonic Band Gaps and Localization, New York: Plenum, 1993 ,vol. 308.
  2. "Development and applications of materials exhibiting photonic band gaps", J. Opt. Soc. Amer. B-Special Issue, vol. 10, 1993.
  3. C. M. Soukoulis, Ed. Photonic Band Gap Materials-Applied Sciences, Boston, MA: Kluwer, 1996,vol. 315.
  4. N. G. Alexopoulos and D. R. Jackson, "Fundamental superstrate effects on printed circuit antennas", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  807-816, Aug.  1984.
  5. N. G. Alexopoulos, D. R. Jackson and P. B. Katehi, "Criteria for nearly omnidirectional radiation patterns for printed antennas", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  195-205, Feb.  1985.
  6. H. Y. Yang and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  860-863, July  1987.
  7. H. Y. Yang, N. G. Alexopoulos and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas", IEEE Trans. Antennas Propagat., vol. 45, pp.  185-187, Jan.  1997.
  8. H. Contopanagos, N. G. Alexopoulos and E. Yablonovitch, "High Q radio frequency structures using one-dimensionally periodic metallic films", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1310-1312, Sept.  1998.
  9. H. Y. Yang, N. G. Alexopoulos and R. E. Diaz, "Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks ", J. Opt. Soc. Amer. B, vol. 14, no. 10, pp.  2513-2519, Oct.  1997.
  10. S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "XQXQXQ", Phys. Rev., vol. B54, p.  11 245, 1996.
  11. J. B. Pendry, "Calculating photonic band gap structures", J. Phys. Condens. Matter 8, p.  1086, 1996 .
  12. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho and C. M. Soukoulis, "Experimental and theoretical results for a two-dimensional metal photonic band gap cavity", Appl. Phys. Lett. , vol. 65, p.  645, 1994.
  13. R. Coccioli, T. Itoh and G. Pelosi, "A finite element-generalized network analysis of finite thickness photonic crystals", 1997 IEEE MTT-S Dig., pp.  195-198, 
  14. E. W. Lucas and T. P. Fontana, "A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays", IEEE Trans. Antennas Propagat., vol. 43, pp.  145-153,  Feb.  1995.
  15. S. D. Gedney, J. F. Lee and R. Mittra, "A combined FEM/MoM approach to analyze the plane wave diffraction by arbitrary gratings", IEEE Trans. Antennas Propagat., vol. 40, pp.  363-370, Feb.  1992.
  16. H. Contopanagos, L. Zhang and N. G. Alexopoulos, "Thin frequency selective lattices integrated in novel compact MIC, MMIC and PCA architectures", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1936-1948, Sept.  1998 .
  17. Y. Qiu and K. M. Leung, "Complex band structure and transmission spectra of two dimensional photonic crystals", SPIE, vol. 2117, p.  32, 1994.
  18. K. Sakoda, "Optical transmittance of a two-dimensional triangular photonic lattice", Phys. Rev., vol. B51, p.  4672, 1995.
  19. K. Sakoda, "Transmittance and Bragg reflectivity of two-dimensional photonic lattices", Phys. Rev., vol. B52, p.  8992 , 1995.
  20. R. E. Collin, Field Theory of Guided Waves, 2nd ed.   New York: IEEE Press, 1991, pp.  771-772. 
  21. M. Born and E. Wolf, Principles of Optics, 4th ed.   Oxford: UK: Pergamon, 1970, pp.  66-70. 
  22. G. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures , Norwood, MA: Artech House, 1980, p.  238. 
  23. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983, pp.  227-251. 
  24. J. J. Sakurai, Advanced Quantum Mechanics, Menlo Park, CA: Benjamin/Cummings , 1984, pp.  41-64. 
  25. W. Pauli, "Zur quantenmechanik des magnetischen elektrons ", Z. Physik, vol. 43, p.  601, 1927.
  26. E. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra , New York: Academic, 1959, pp.  157-170.