2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 1, January 2000
Table of Contents for this issue
Complete paper in PDF format
Artificial versus Natural
Crystals: Effective Wave Impedance of Printed Photonic Bandgap Materials
Chryssoula A. Kyriazidou
, Member, IEEE
Harry F. Contopanagos
, Member, IEEE
William M. Merrill
, Student Member, IEEE
and Nicólaos G.
Alexópoulos Fellow,
IEEE
Page 95.
Abstract:
Printed metallo-dielectric photonic bandgap (PBG) materials are
analyzed using an analytical approach based on multipole expansions for the
scattered fields off individual scatterers and a transfer-matrix method for
reconstructing the total scattered fields created by successive lattice planes
of the artificial crystal. An effective description of the PBG medium is derived
and its correspondence with natural crystals
is further advanced through an analysis based on Lorentzian response functions,
which characterize natural crystals. The effective wave impedance and bulk
reflection coefficient of the medium are provided and their properties inside
and outside the bandgaps are examined. The presented treatment for these effective
response functions extends far beyond the traditional effective medium theory
(EMT) limits.
References
-
C. M. Soukoulis, Ed.
Photonic Band Gaps and Localization,
New York: Plenum, 1993
,vol. 308.
-
"Development and applications of materials exhibiting
photonic band gaps", J. Opt. Soc. Amer. B-Special Issue, vol. 10, 1993.
-
C. M. Soukoulis, Ed.
Photonic Band Gap Materials-Applied Sciences, Boston, MA:
Kluwer, 1996,vol. 315.
-
N. G.
Alexopoulos and D. R.
Jackson, "Fundamental superstrate effects
on printed circuit antennas",
IEEE Trans. Antennas Propagat., vol. AP-32, pp. 807-816, Aug. 1984.
-
N. G.
Alexopoulos, D. R.
Jackson and P. B.
Katehi, "Criteria for nearly omnidirectional
radiation patterns for printed antennas",
IEEE Trans. Antennas Propagat., vol. AP-33, pp. 195-205, Feb. 1985.
-
H. Y.
Yang and N. G.
Alexopoulos, "Gain enhancement methods for printed
circuit antennas through multiple superstrates", IEEE Trans. Antennas
Propagat., vol. AP-35, pp. 860-863, July 1987.
-
H. Y.
Yang, N. G.
Alexopoulos and E.
Yablonovitch, "Photonic band-gap materials
for high-gain printed circuit antennas", IEEE Trans. Antennas Propagat., vol. 45, pp. 185-187, Jan. 1997.
-
H.
Contopanagos, N. G.
Alexopoulos and E.
Yablonovitch, "High Q
radio frequency structures using one-dimensionally periodic metallic
films", IEEE Trans. Microwave Theory Tech., vol. 46, pp.
1310-1312, Sept. 1998.
-
H. Y.
Yang, N. G.
Alexopoulos and R. E.
Diaz, "Reflection and transmission of waves
from multilayer structures with planar-implanted periodic material blocks
", J. Opt. Soc. Amer. B, vol. 14, no. 10, pp. 2513-2519, Oct.
1997.
-
S.
Fan, P. R.
Villeneuve and J. D.
Joannopoulos, "XQXQXQ", Phys. Rev., vol. B54, p. 11 245, 1996.
-
J. B.
Pendry, "Calculating photonic band gap structures",
J. Phys. Condens. Matter 8, p. 1086, 1996
.
-
D. R.
Smith, S.
Schultz, N.
Kroll, M.
Sigalas, K. M.
Ho and C. M.
Soukoulis, "Experimental and theoretical results
for a two-dimensional metal photonic band gap cavity", Appl. Phys. Lett.
, vol. 65, p. 645, 1994.
-
R.
Coccioli, T.
Itoh and G.
Pelosi, "A finite element-generalized network analysis
of finite thickness photonic crystals", 1997 IEEE MTT-S Dig., pp. 195-198,
-
E. W.
Lucas and T. P.
Fontana, "A 3-D hybrid finite element/boundary element
method for the unified radiation and scattering analysis of general infinite
periodic arrays", IEEE Trans. Antennas Propagat., vol. 43, pp. 145-153,
Feb. 1995.
-
S. D.
Gedney, J. F.
Lee and R.
Mittra, "A combined FEM/MoM approach to analyze the
plane wave diffraction by arbitrary gratings", IEEE Trans. Antennas Propagat., vol. 40, pp. 363-370, Feb. 1992.
-
H.
Contopanagos, L.
Zhang and N. G.
Alexopoulos, "Thin frequency selective lattices
integrated in novel compact MIC, MMIC and PCA architectures",
IEEE Trans.
Microwave Theory Tech., vol. 46, pp. 1936-1948, Sept. 1998
.
-
Y.
Qiu and K. M.
Leung, "Complex band structure and transmission spectra
of two dimensional photonic crystals",
SPIE, vol. 2117, p.
32, 1994.
-
K.
Sakoda, "Optical transmittance of a two-dimensional
triangular photonic lattice", Phys. Rev., vol. B51, p. 4672, 1995.
-
K.
Sakoda, "Transmittance and Bragg reflectivity of two-dimensional
photonic lattices",
Phys. Rev., vol. B52, p. 8992
, 1995.
-
R. E. Collin,
Field Theory of Guided Waves,
2nd ed. New York: IEEE Press, 1991, pp. 771-772.
-
M. Born and
E. Wolf,
Principles of Optics, 4th ed. Oxford: UK: Pergamon, 1970, pp. 66-70.
-
G. Matthaei,
L. Young and
E. M. T. Jones,
Microwave Filters, Impedance-Matching Networks and Coupling Structures
, Norwood, MA: Artech House, 1980, p. 238.
-
C. Bohren and
D. Huffman,
Absorption and Scattering of Light by Small Particles, New York:
Wiley, 1983, pp. 227-251.
-
J. J. Sakurai,
Advanced Quantum Mechanics, Menlo Park, CA: Benjamin/Cummings
, 1984, pp. 41-64.
-
W.
Pauli, "Zur quantenmechanik des magnetischen elektrons
", Z. Physik, vol. 43, p. 601, 1927.
-
E. Wigner,
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
, New York: Academic, 1959, pp.
157-170.