2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Some Convergence Considerations in Space-Domain Moment-Method Analysis of a Class of Wide-Band Microstrip Antennas

Deb Chatterjee, Member, IEEE and Richard G. Plumb Senior Member, IEEE

Page 147.

Abstract:

The method of moments (MoM) analysis of probe-fed rectangular microstrip patches requires the inclusion of a probe-to-patch attachment mode-expansion function when the substrate thickness d >= 0.02, where is the free-space wavelength. The results for the input impedance showed increased divergence with measurements when the attachment mode was omitted from the full-wave analysis. The attachment mode can be expressed as an infinite eigenfunction series that increases the fill time of the impedance matrix in an MoM analysis. In an earlier investigation, the infinite eigenfunction series was reduced to a residue series that required one or two terms compared to about 55 terms for the eigenfunction series. In this paper, the convergence properties of the eigenfunction and residue series are investigated in view of rigorous MoM analysis. The relative errors resulting from replacing the eigenfunction by the residue series for the attachment mode, are compared by numerically evaluating a class of two-dimensional (2-D) spatial integrals shown to be closely related to the elements of an MoM impedance matrix. Additionally,the computation times for the evaluation of these integrals for the two forms of the attachment mode-expansion function are also included. Based on the superior convergence properties of the residue series for the attachment mode-expansion function, it is mathematically justified that this form can readily be used for analytic reduction of the spatial, reaction integrals from four to 2-D forms. This feature allows further reduction of the fill time of the MoM impedance matrix, suggesting the possibility of developing an efficient space-domain MoM technique for modeling of wide-band microstrip antennas.

References

  1. R. B. Waterhouse, S. D. Targonski and D. M. Kotokoff, "Design and performance of small printed antennas", IEEE Trans. Antennas Propagat., vol. 46, pp.  1629-1633,  Nov.  1998.
  2. J. F. Zürcher and F. E. Gardiol, Broadband Patch Antennas, Norwood, MA: Artech House, 1995.
  3. K. F. Lee, and W. Chen, Eds., Advances in Microstrip and Printed Antennas, New York: Wiley, 1997.
  4. R. A. Sainati, CAD of Microstrip Antennas for Wireless Applications, Norwood, MA: Artech House, 1996.
  5. K. L. Virga and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z] or [Y] matrix interpolation with method of moments", IEEE Trans. Antennas Propagat., vol. 47, pp.  65-76, Jan.  1999.
  6. R. F. Harrington, Field Computation by Moment Methods, New York: IEEE Press, 1993.
  7. E. H. Newman, "An overview of the hybrid MM/Green's function method in electromagnetics", Proc. IEEE, vol. 76, pp.  270-282,  Mar.  1988.
  8. S. Barkeshli, P. H. Pathak and M. Marin, "An asymptotic closed-form microstrip surface Green's function for the efficient moment method analysis of mutual coupling in microstrip antennas", IEEE Trans. Antennas Propagat., vol. 38, pp.  1374-1383, Sept.  1990.
  9. K. A. Michalski, "Extrapolation methods for Sommerfeld integral tails", IEEE Trans. Antennas Propagat., vol. 46, pp.  1405-1418, Oct.  1998.
  10. S.-O. Park and C. A. Balanis, "Analytical technique to evaluate the asymptotic part of the impedance matrix of Sommerfeld-type integrals", IEEE Trans. Antennas Propagat., vol. 45, pp.  798-805, May  1997.
  11. S.-O. Park, C. A. Balanis and C. R. Birchter, "Analytical evaluation of the asymptotic impedance matrix of a grounded dielectric slab with roof-top functions", IEEE Trans. Antennas Propagat., vol. 46, pp.  251-259, Feb.  1998 .
  12. R. W. Scharstein, "Mutual coupling in a slotted phased array, infinite in E -plane and finite in H -plane", IEEE Trans. Antennas Propagat., vol. 38, pp.  1186-1191, Aug.  1990.
  13. M. I. Aksun and R. Mittra, "Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  503 -509, Mar.  1993.
  14. L. Atalan, M. I. Aksun, K. Mahadevan and M. T. Birand, "Analytical evaluation of the MoM matrix elements", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  519-525, Apr.  1996.
  15. D. H. Schaubert, D. M. Pozar and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories with experiment", IEEE Trans. Antennas Propagat., vol. 37, pp.  677-683, June  1989 .
  16. J. T. Aberle and D. M. Pozar, "Analysis of infinite arrays of probe-fed rectangular microstrip patches", Proc. Inst. Elect. Eng., vol. 136, pp.  110-119, Apr.  1989.
  17. D. M. Pozar and E. H. Newman, "Analysis of a monopole mounted near or at the edge of a half-plane", IEEE Trans. Antennas Propagat., vol. AP-29, pp.  488-495,  May  1981.
  18. R. K. Moore, IMSL User's Manual, Houston, TX: IMSL Customer Support, Aug. 1989.
  19. J. R. Rice, Numerical Methods, Software, and Analysis, New York: Academic, 1993.
  20. D. Chatterjee and R. G. Plumb, "A hybrid formulation for the probe-to-patch attachment mode current for rectangular microstrip antennas", IEEE Trans. Antennas Propagat., vol. 44, pp.  677-686, May  1996.
  21. "Convergence considerations in moment-method analysis of a class of microstrip antennas", in IEEE Antennas Propagat. Symp. Dig., vol. 2, Montréal, Québec, Canada,July 1997, pp.  602- 605. 
  22. D. Chatterjee, "Advances in modeling techniques for a class of microstrip antennas", Ph.D. Dissertation, Dept. of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, Feb. 1998.