2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 2, February 2000

Table of Contents for this issue

Complete paper in PDF format

Two Time-Derivative Lorentz Material (2TDLM) Formulation of a Maxwellian Absorbing Layer Matched to a Lossy Medium

David C. Wittwer, Member, IEEE and Richard W. Ziolkowski Fellow, IEEE

Page 192.

Abstract:

A two time-derivative Lorentz material (2TDLM) is introduced to define polarization and magnetization fields that lead to an absorbing layer that can be matched to a lossy dielectric medium. The 2TDLM is a generalization of the successful uniaxial polarization and magnetization time-derivative Lorentz material (TDLM) which has been introduced as an absorbing boundary condition for simulation regions dealing with lossless materials. Expressions are derived to describe the propagation of an arbitrary plane wave in this 2TDLM Maxwellian absorbing material. They are used to study the scattering from a semi-infinite 2TDLM half-space of an arbitrary plane wave incident upon it from a lossy isotropic dielectric medium. Matching conditions are derived which produce reflectionless transmission through such an interface for any angle of incidence and frequency. Numerical tests are given which demonstrate the effectiveness of the resulting 2TDLM absorbing layer.

References

  1. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Computat. Phys., vol. 114, pp.  185-200, Oct.  1994.
  2. D. S. Katz, E. T. Thiele and A. Taflove, "Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes", IEEE Microwave Guided Wave Lett., vol. 4, pp.  268-270, Aug.  1994.
  3. W. C. Chew and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates", Microwave Opt. Technol. Lett., vol. 7, pp.  599-604, Sept.  1994.
  4. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz and A. Taflove, "Ultrawideband absorbing boundary condition for termination of waveguiding structures in FDTD simulations", IEEE Microwave Guided Wave Lett., vol. 4, pp.  246-344, Oct.  1994.
  5. C. M. Rappaport, "Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space", IEEE Microwave Guided Wave Lett., vol.  5, pp.  90-92, Mar.  1995.
  6. R. Mittra and Ü. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves", IEEE Microwave Guided Wave Lett., vol. 5, pp.  84-86, Mar.  1995.
  7. Z. S. Sacks, D. M. Kingsland, R. Lee and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition", IEEE Trans. Antennas Propagat., vol. 43, pp.  1460-1463, Dec.  1995.
  8. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA: Artech House, 1995.
  9. L. Zhao and A. C. Cangellaris, "GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2555-2563, Dec.  1996.
  10. S. Gedney, "An anisotropic perfectly matched layer-Absorbing medium for the truncation of FDTD lattices", IEEE Trans. Antennas Propagat., vol. 44, pp.  1630-1639, Dec.  1996.
  11. R. W. Ziolkowski, "The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials", IEEE Trans. Antennas Propagat., vol. 45, pp.  656-671,  Apr.  1997.
  12. R. W. Ziolkowski, "Time-derivative Lorentz materials and their utilization as electromagnetic absorbers", Phys. Rev. E, vol. 55, no. 6, pp.  7696-7703, June  1997.
  13. R. W. Ziolkowski, "Time-derivative Lorentz material model-based absorbing boundary condition", IEEE Trans. Antennas Propagat., vol. 45, pp.  1530-1535, Oct.  1997.
  14. R. W. Ziolkowski, "Maxwellian material based absorbing boundary conditions", Comp. Meth. Appl. Mech. Eng., vol. 169, no.  3/4, pp.  237-262, Feb.  1999.
  15. E. Turkel and A. Yefet, "Absorbing PML boundary layers for wave-like equations", preprint, July 1997.
  16. S. Abarbanel and D. Gottlieb, "On the construction and analysis of absorbing layers in CEM", in Proc. Appl. Computat. Electromagn. Soc., Monterey, CA, Mar. 1997, pp.  876- 883. 
  17. R. W. Ziolkowski and F. Auzanneau, "Passive artificial molecule realizations of dielectric materials", J. Appl. Phys., vol. 82, no. 7, pp.  3195-3198, Oct.  1997.
  18. R. W. Ziolkowski and F. Auzanneau, "Artificial molecule realization of a magnetic wall", J. Appl. Phys., vol. 82, no. 7, pp.  3192-3194, Oct.  1997.
  19. F. Auzanneau and R. W. Ziolkowski, "Theoretical study of synthetic bianisotropic smart materials", J. Electromagn. Waves Applicat., vol. 12, no. 3, pp.  353-370, Mar.  1999.
  20. D. C. Wittwer and R. W. Ziolkowski, "Maxwellian material based absorbing boundary conditions for lossy media in 3-D", IEEE Trans. Antennas Propagat., Aug.  1998.
  21. S. D. Gedney, "An anisotropic PML absorbing media for FDTD simulation of fields in lossy dispersive media", Electromagn., vol. 16, pp.  399-415, July/Aug.  1996.
  22. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA: Artech House, 1998.
  23. Y. C. Lau, M. S. Leong and P. S. Kooi, "Extension of Berenger's PML boundary condition in matching lossy medium and evanescent waves", Electron. Lett., vol. 32, no.  11, pp.  974-976, 1996.
  24. J. Fang and Z. Wu, "Generalized perfect matched layer for the absorption of propagating and evanescent waves in lossless and lossy media", IEEE Trans. Microwave Theory Tech., vol. 14, pp.  2216-2222, Dec.  1996 .
  25. Q. H. Liu, "An FDTD algorithm with perfectly matched layers for conductive media", Microwave Opt. Technol. Lett., vol. 14, pp.  134-137,  Feb.  1997.
  26. C. M. Rappaport and S. C. Winton, "Modeling dispersive soil for FDTD computation by fitting conductivity parameters", in Proc. Appl. Computat. Electromagn. Soc., Monterey, CA, Mar. 1997, pp.  112-117. 
  27. J. Kong, Electromagnetic Waves, New York: Wiley, 1986, pp.  110-111. 
  28. D. C. Wittwer and R. W. Ziolkowski, "How to design the imperfect Berenger PML", Electromagn., vol. 16, pp.  465-485, July/Aug.  1996.
  29. D. C. Wittwer and R. W. Ziolkowski, "The effect of dielectric loss in FDTD simulations of microstrip structures", IEEE Trans. Microwave Theory Tech.,