2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

Determining the Equivalent Impedance Boundary Condition for Corrugated Coatings Based on the Genetic Algorithm

Tao Su, Student Member, IEEE and Hao Ling

Page 374.

Abstract:

A methodology based on the genetic algorithm (GA) is proposed to determine the equivalent impedance boundary condition (IBC) for corrugated material coating structures. In this approach, rigorous solutions of the reflection coefficients at a number of incident angles are first calculated using a periodic method of moments (MoM) solver. The IBC model is used to predict the reflection coefficients at the same observation angles. The model coefficients are then optimized using the GA so that the difference between the approximated and the MoM predicted reflection coefficients is minimized. The GA proves efficient in obtaining an optimal IBC model. The resulting IBC model can be readily incorporated into an existing computational electromagnetics code to assess the performance of the corrugated coating when mounted on complex platforms.

References

  1. D. J. Hoppe and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Bristol, PA: Taylor Francis, 1995 .
  2. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: Inst. Elect. Eng., 1995.
  3. G. Pelosi and P. Y. Ufimtsev, "The impedance-boundary condition", IEEE Antennas Propagat. Mag., vol. 38, pp.  31-34, Feb.  1996.
  4. T. B. A. Senior and J. L. Volakis, "Derivation and application of a class of generalized boundary conditions", IEEE Trans. Antennas Propagat., vol. 37, pp.  1566-1572, Dec.  1989.
  5. K. W. Whites and R. Mittra, "Equivalent boundary-condition model for lossy planar periodic structures at low frequencies", IEEE Trans. Antennas Propagat., vol. 44, pp.  1617-1629, Dec.  1996.
  6. J. Moore, H. Ling and C. S. Liang, "The scattering and absorption characteristics of material-coated periodic grating under oblique incidence", IEEE Trans. Antennas Propagat., vol. 41, pp.  1281-1288, Sept.  1993.
  7. R. Petit, Ed., Electromagnetic Theory of Gratings, New York: Springer-Verlag, 1980.
  8. L. Davis, Ed., "Handbook of Genetic Algorithms", Van Nostrand Reinhold, New York, 1991.
  9. R. L. Haupt, "An introduction to genetic algorithms for electromagnetics", IEEE Antennas Propagat. Mag., vol. 37, pp.  7 -15, Apr.  1995.
  10. D. S. Weile and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review", IEEE Trans. Antennas Propagat., vol. 45, pp.  343-353, Mar.  1997.
  11. G. Winter, J. Periaux, M. Galan and P. Cuesta, Genetic Algorithms in Engineering and Computer Science, New York: Wiley, 1995.
  12. "User's Manual for FISC (Fast Illinois Solver Code)", Ctr. Computat. Electromagn., Univ. Illinois and DEMACO, Champaign, IL, Jan.  1997.
  13. J. M. Song and W. C. Chew, "Fast multipole method solution using parametric geometry", Microwave Opt. Tech. Lett., vol. 7, pp.  760 -765, Nov.  1994.