2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

The Simultaneous Interpolation of Antenna Radiation Patterns in Both the Spatial and Frequency Domains Using Model-Based Parameter Estimation

Douglas H. Werner, Senior Member, IEEE and Rene J. Allard

Page 383.

Abstract:

The Padé rational function fitting model commonly used for model-based parameter estimation (MBPE) in the frequency domain is enhanced to include spatial dependence in the numerator and denominator coefficients. This allows the function to interpolate an antenna radiated electric field pattern in both the frequency and spatial domains simultaneously, such that a single set of coefficients can be used to accurately reconstruct an entire radiation pattern at any frequency in the fitting-model range. A simple procedure is introduced for transforming interpolated electric fields into gain patterns using input impedance versus frequency curves also obtained via MBPE. The utility of this method is demonstrated by applying it to a dipole antenna over a frequency range of 150-950 MHz and using a polynomial representation in for the coefficient spatial dependence. It is also used to estimate radiation patterns for a three-element Yagi array between the frequencies of 470 and 500 MHz using a binomial representation for the spatial variation that includes terms dependent on as well as . The use of this method for interpolating radiation patterns has at least two significant advantages; one being large compression ratios for the amount of data that must be stored to accurately reproduce patterns and the other being a significant decrease in the amount of time required for modeling problems with large computational domains.

References

  1. P. Lancaster and K. Salkauskas, Curve and Surface Fitting: An Introduction, New York: Academic, 1986, p.  280. 
  2. E. K. Miller, "Model-based parameter estimation in electromagnetics-I: Background and theoretical development", Applied Computational Electromagnetics Society Newsletter, vol. 10, no. 3, pp.  40-63, 1995.
  3. E. K. Miller, "Model-based parameter estimations in electromagnetics-Part I: Background and theoretical development", IEEE Antennas Propagat. Mag., vol. 40, pp.  42-52, 1998.
  4. E. K. Miller, "Model-based parameter estimation in electromagnetics-Part II: Applications to EM observables", Appl. Computat. Electromagn. Soc. Newsletter, vol. 11, no. 1, pp.  35-56, 1996.
  5. E. K. Miller, "Model-based parameter estimation in electromagnetics-Part III: Applications to EM integral equations", Appl. Computat. Electromagn. Soc. J., vol. 10, no. 3, pp.  9-29, 1995.
  6. E. K. Miller, "Using model-based parameter estimation to estimate the accuracy of numerical models", in 12th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, 1996, pp.  588- 595. 
  7. E. K. Miller, "Minimizing the number of frequency samples needed to represent a transfer function using adaptive sampling", in 12th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, pp.  1132-1139. 
  8. E. K. Miller, "Using windowed, adaptive sampling to minimize the number of field values needed to estimate radiation and scattering patterns", in 14th Annu. Rev. Progress Appl. Computat. Electromagn., vol. 2, 1998, pp.  958-963. 
  9. R. Roberts and D. A. McNamara, "Interpolating radiation patterns using Prony's method", in Proc. Symp. Antennas Propagat. Microwave Theory Tech. , Stellenbosch, South Africa, 1994, pp.  151- 154. 
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing , New York: Cambridge Univ. Press, 1986, p.  818. 
  11. R. J. Allard, D. H. Werner, J. S. Zmyslo and P. L. Werner, "Spectral domain interpolation of antenna radiation patterns using model-based parameter estimation and genetic algorithms", in 14th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, 1998, pp.  964-971. 
  12. R. J. Allard, D. H. Werner, J. S. Zmyslo and P. L. Werner, "Model-based parameter estimation of antenna radiation pattern frequency spectra", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., vol. 1, Atlanta, GA, June 1998, pp.  62-65. 
  13. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York: Wiley, 1981, p.  598. 
  14. C. E. Baum, "Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers", Proc. IEEE, vol. 64, pp.  1598-1615, Nov.  1976.
  15. J. N. Brittingham, E. K. Miller and J. L. Willows, "Pole extraction from real-frequency information", Proc. IEEE, vol. 68, pp.  263-273, Feb.  1980.
  16. E. K. Miller, "Computing radiation and scattering patterns using model-based parameter estimation", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., vol. 1, Atlanta, GA, June 1998, pp.  66-69. 
  17. N. K. Bose, Digital Filters: Theory and Applications, Malabar, FL: Krieger, 1985, p.  508. 
  18. N. K. Bose and S. Basu, "Theory and recursive computation of 1-D matrix Padé approximants", IEEE Trans. Circuits Syst., vol. 27, pp.  323-325,  Apr.  1980.