2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 48 Number 3, March 2000
Table of Contents for this issue
Complete paper in PDF format
Inverse O bstacle
Scattering for Homogeneous Dielectric Cylinders Using a Boundary Finite-Element
Method
Stéphane Bonnard, Patrick Vincent and Marc Saillard
Page 393.
Abstract:
A method for reconstructing the shape and the permittivity of
a penetrable homogeneous cylinder is described. It is the extension to penetrable
cylinders of a previous work dealing with perfectly conducting cylinders.
A low-frequency approximation is used to determine an initial guess. Then,a rigorous boundary integral method permits us to reconstruct arbitrary shapes
and complex permittivities. It is based on an iterative conjugate gradient
algorithm requiring the solving of two direct diffraction problems only. A
simple and original regularization scheme is presented, which ensures the
robustness of the algorithm. Numerical examples with lossy embedding media
and additional random noise for both E// and
H// polarizations are given.
References
-
C. Torres-Verdin and T. Habashy, "Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation", Radio Sci.
, vol. 29, no. 4, pp. 1051-1079, 1994.
-
C. Torres-Verdin and T. Habashy, "A two-step linear inversion of two-dimensional electrical conductivity", IEEE Trans. Antennas Propagat., vol. 43, pp. 405-415,
Apr. 1995.
-
G. Newman, "Crosswell electromagnetic inversion using integral and differential equations", Geophys., vol. 60, no. 3, pp.
899-911, 1995.
-
R. E. Kleinman and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography", J. Computat. Appl. Math., vol. 42, pp. 17-35, 1992.
-
R. E. Kleinman and P. M. van den Berg, "Two-dimensional location and shape reconstruction", Radio Sci., vol. 29, no. 4, pp. 1157
-1169, 1994.
-
K. Belkebir, C. Pichot and R. E. Kleinman, "Microwave imaging-Location and shape reconstruction from multifrequency scattering data", IEEE Trans. Microwave
Theory Tech., vol. 45, pp. 469-476, Apr. 1997.
-
T. Habashy, R. W. Groom and B. R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering", J. Geophys. Res., vol. 98, pp. 1759-1775, 1993.
-
C.-C. Chiu and Y.-W. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinder", IEEE Trans. Microwave Theory Tech., vol. 39, no. 9, pp. 1632-39, 1991.
-
E. Ngakosso, M. Saillard and P. Vincent, "Electromagnetic diffraction by homogeneous cylinders of the field radiated by a dipole: A rigorous computation",
J. Electromagn. Waves Applicat., vol. 9, no. 9, pp. 1189-1205, 1995.
-
S. Bonnard, P. Vincent and M. Saillard, "Cross-borehole inverse scattering using a boundary finite element method", Inverse Problems, vol. 14, no.
3, pp. 521-534, June 1998.
-
P. Maponi, M. Recchioni and F. Zirilli, "Three-dimensional time harmonic electromagnetic inverse scattering-the reconstruction of the shape and the impedance of an obstacle", Computat. Math. Applicat., vol. 31, pp. 1-7, 1996.
-
J.-H. Lin and W. C. Chew, "Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods", J. Opt. Soc. Amer. A, vol. 14, no. 11, pp.
3037-3045, 1997.
-
A. Kirsch, "The domain derivative and two applications in inverse scattering theory", Inverse Problems, vol. 9, pp. 81-96, 1993
.
-
R. Potthast, "Frechet differentiability of boundary integral operators", Inverse Problems, vol. 10, pp. 431-447, 1994.
-
F. Hettlich, "Frechet derivatives in inverse obstacle scattering", Inverse Problems, vol. 11, pp. 371-382, 1995.
-
R. Kress and W. Rundell, "A quasi-Newton method in inverse obstacle scattering", Inverse Problems, vol. 10, pp. 1145-1157, 1994.
-
F. Hettlich and W. Rundell, "A quasi-Newton method in inverse obstacle scattering", Inverse Problems, vol. 12, pp. 251-266, 1996.
-
A. Roger, "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix", Electromagn., vol.
2, pp. 69-83, 1982.
-
A. Roger, "Optimization of perfectly conducting gratings. A general method", Optica Acta, vol. 30, no. 3, pp. 387
-398, 1983.
-
A. Roger, "Problèmes inverses en électromagnétisme. Etude théorique, numérique et résultats expérimentaux", Revue du Cethedec, Ondes et Signal, vol. 76, pp.
35-43, 1983.
-
D. Maystre and P. Vincent, "Diffraction d'une onde électromagnétique plane par un objet cylindrique non infiniment conducteur de section arbitraire", Opt. Communicat., vol. 5, pp. 327-330, 1972.
-
M. Saillard, P. Vincent and D. Maystre, "A finite element method for electromagnetic subsurface tomography", Finite Element Software for Microwave Engineering, pp. 237
-265, 1996.
-
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, "Numerical Recipes in FORTRAN", 1992.
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 10th ed. New York: Dover, 1972.
-
M. Fink, "Time-reversed acoustics", Phys. Today, pp. 34-40,
Mar. 1997.
-
H. Tortel, G. Micolau and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering", J. Electromagn. Waves Applicat., vol. 13, pp. 687-711, 1999.
-
D. Colton, M. Piana and R. Potthast, "A simple method using Morozov's discrepancy principle for solving inverse scattering problems", Inverse Problems, vol. 13, no. 6, pp. 1477-93, 1997.
-
A. Litman, D. Lesselier and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set", Inverse Problems, vol. 14, pp. 685-706, 1998.