2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 3, March 2000

Table of Contents for this issue

Complete paper in PDF format

The Foster Reactance Theorem for Antennas and Radiation Q

Wen Geyi, Perry Jarmuszewski, Member, IEEE and Yihong Qi Member, IEEE

Page 401.

Abstract:

The calculation of antenna Q has been an interesting and a controversial topic for years. In this paper,we first give a rigorous study of antenna Q by introducing a complete description of the complex power balance relation for an antenna system. Using the complex Poynting theorem, we have shown that the antenna is essentially equivalent to a one port lossy network. The Foster reactance theorem is usually stated for a lossless network. The main purpose of this paper is to determine whether the Foster reactance theorem holds for antennas. By making use of a complex frequency domain version of the Poynting theorem, we have shown that the Foster reactance theorem is valid for an antenna. Finally, the Foster reactance theorem for the antenna has been applied to demonstrate the widely held assumption Q 1/B, provided Q >> 1, where B stands for the fractional bandwidth of an arbitrary antenna.

References

  1. R. E. Collin, "Minimum Q of small antennas", J. Electromagn. Waves Applicat., vol. 12, pp.  1369-1393,  1998.
  2. L. J. Chu, "Physical limitations of antenna Q", J. Appl. Phys., vol. 19, pp.  1163-1175, 1948.
  3. R. F. Harrington, "Effect of antenna size on gain, bandwidth and efficiency", J. Res. Nat. Bureau Stand., vol. 64D, pp.  1-12,  Jan.  1960.
  4. R. E. Collin and S. Rothschild, "Evaluation of antenna Q", IEEE Trans. Antennas Propagat., vol. AP-12, pp.  23-27,  Jan.  1964.
  5. R. L. Fante, "Quality factor of general idea antennas", IEEE Trans. Antennas Propagat., vol. AP-17, pp.  151-155, Mar.  1969 .
  6. J. McLean, "A re-examination of the fundamental limits on the radiation Q of electrically small antennas", IEEE Trans. Antennas Propagat., vol. 44, pp.  672-676, May  1996.
  7. D. R. Rhodes, "On the stored energy of planar apertures", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  676-683, Nov.  1966 .
  8. D. R. Rhodes, "Observable stored energies of electromagnetic systems", J. Franklin Inst., vol. 302, no. 3, pp.  225-237, 1976 .
  9. D. R. Rhodes, "A reactance theorem", in Proc. Roy. Soc. London, vol. 353, 1977, pp.  1-10. 
  10. G. V. Borgiotti, "On the reactive energy of an aperture", IEEE Trans. Antennas Propagat., vol. AP-15, pp.  565-566, July  1967 .
  11. R. E. Collin, "Stored energy Q and frequency sensitivity of planar aperture antennas", IEEE Trans. Antennas Propagat., vol. AP-15, pp.  567-568, July  1967.
  12. C. A. Grimes and D. M. Grimes, "The Poynting theorem and the potential for small antennas", Proc. IEEE Aerosp. Conf., vol. 3, pp.  161-176,  1997.
  13. D. M. Grimes and C. A. Grimes, "Power in modal radiation fields: Limits of the complex Poynting theorem and the potential for electrically small antennas", J. Electromagn. Waves Applicat., vol. 11, pp.  1721-1747, 1997.
  14. D. M. Grimes and C. A. Grimes, "Radiation Q of dipole-generated fields", Radio Sci., vol. 34, no.  2, pp.  281-296, 1999.
  15. H. A. Wheeler, "Small antennas", IEEE Trans. Antennas Propagat., vol. AP-23, pp.  462-469, July  1975.
  16. E. A. Guillemin, Introductory Circuit Theory, New York: Wiley, 1953.
  17. R. B. Adler, L. J. Chu and R. M. Fano, Electromagnetic Energy and Transmission and Radiation, New York: Wiley, 1960.
  18. R. F. Harrington, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.
  19. R. F. Harrington, Field Computation by Moment Methods, Piscataway, NJ: IEEE Press, 1993.