2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Sparsity and Conditioning of Impedance Matrices Obtained with Semi-Orthogonal and Bi-Orthogonal Wavelet Bases

Wojciech L. Golik

Page 473.

Abstract:

Wavelet and wavelet packet transforms are often used to sparsify dense matrices arising in discretization of CEM integral equations. This paper compares orthogonal, semi-orthogonal, and bi-orthogonal wavelet and wavelet packet transforms with respect to the condition numbers, matrix sparsity,and number of iterations for the transformed systems. The best overall results are obtained with the orthogonal wavelet packet transforms that produce highly sparse matrices requiring fewest iterations. Among wavelet transforms the semi-orthogonal wavelet transforms lead to sparsest matrices, but require too many iterations due to high-condition numbers. The bi-orthogonal wavelets produce very poor sparsity and require many iterations and should not be used in these applications.

References

  1. V. Rokhlin, "Diagonal forms of translation operators for the Helmholtz equation in three dimensions", Appl. Comput. Harmonic Anal., vol.  1, pp.  82-93, 1993.
  2. C.-C. Lu and W. C. Chew, "A multilevel algorithm for solving boundary integral equation", Microwave Opt. Tech. Lett., vol. 7, no.  10, pp.  466-470, July  1994.
  3. E. Bleszynski, M. Bleszynski and T. Jaroszewicz, "Fast integral-equation solver for electromagnetic scattering problems", in 10th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, 1994.
  4. F. X. Canning, "Sparse approximations for solving integral equations with oscillatory kernels", SIAM J. Sci. Statist. Comput., vol.  13, no. 1, pp.  71-87, 1992.
  5. H. Kim and H. Ling, "Wavelet analysis of radar echo from finite-size targets", IEEE Trans. Antennas Propagat., vol. 41, pp.  200-207, Feb.  1993.
  6. B. Z. Steinberg and Y. Leviatan, "On the use of wavelet expansions in the method of moments", IEEE Trans. Antennas Propagat., vol. 41, pp.  610-619,  May  1993.
  7. R. L. Wagner and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations", IEEE Trans. Antennas Propagat., vol. 43, pp.  802-810,  Aug.  1995.
  8. T. Petersdorff and C. Schwab, "Fully discrete multiscale Galerkin BEM,"in Multiscale Wavelet Methods for PDE's, W. Dahmen, A. J. Kurdila, and P. Oswald, Eds. New York: Academic, 1997, pp.  287-345. 
  9. W. L. Golik, "Wavelet packets for fast solution of electromagnetic integral equations", IEEE Trans. Antennas Propagat., vol. 46, pp.  618-625,  May  1998.
  10. Z. Xiang and Y. Lu, "An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations", IEEE Trans. Antennas Propagat., vol. 45, pp.  1205-1213, Aug.  1997.
  11. W. L. Golik, "Conditioning of biorthogonal wavelet transforms and iterative solvers for electromagnetic integral equations", in 15th Annu. Rev. Progress Appl. Computat. Electromagn., Monterey, CA, 1999.
  12. W. L. Golik, "Block wavelet tranforms for fast mom computations: An application to Pocklington's equation", Tech. Rep., 1996.
  13. G. Wang, "Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers", IEEE Trans. Antennas Propagat., vol. 45, pp.  885-893, May  1997.
  14. L. N. Trefethen and D. Bau, Numerical Linear Algebra, Philadelphia, PA: SIAM, 1997.
  15. R. D. Nevels, J. C. Goswami and H. Tehrani, "Semi-orthogonal versus orthogonal wavelet basis sets solving integral equations", IEEE Trans. Antennas Propagat., vol. 45, pp.  1332-1339, Sept.  1997.
  16. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  17. C. K. Chui, "An introduction to wavelets,"in Wavelet Analysis and Applications, New York: Academic, 1992.
  18. A. Cohen, "Wavelets: A tutorial in theory and applications", Wavelet Analysis and its Applications, vol. 2, pp.  123-152, 1992.
  19. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, A. K. Peters, Ed. Boston, MA: Kluwer, 1994.
  20. Z. Baharav and Y. Leviatan, "Impedance matrix compression using adaptively constructed basis functions", IEEE Trans. Antennas Propagat., vol. 44, pp.  1231-1238, Sept.  1996.
  21. R. Turcajova, "Numerical condition of discrete wavelet transforms", SIAM J. Matrix Anal. Appl., vol. 18, no. 4, pp.  981 -999, 1997.
  22. A. Cohen, I. Daubechies and J. C. Feauveau, "Biorthogonal bases of compactly supported wavelets", Comm. Pure Appl. Math., vol. 45, pp.  485-560, 1992.
  23. F. Keinert, "Numerical stability of biorthogonal wavelet transforms", J. Adv. Comput. Math., vol. 4, pp.  1-26, 1995.
  24. H. Deng and H. Ling, "Moment matrix sparsification using adaptive wavelet packet transform", Inst. Elect. Eng. Electron. Lett., pp.  1127-1128, June  1997.
  25. A. Cohen and I. Daubechies, "On the instability of arbitrary biorthogonal wavelet packets", SIAM J. Math. Anal., vol. 24, pp.  1340-1354, 1993.
  26. C. K. Chui and C. Li, "Nonorthogonal wavelet packets", SIAM J. Math. Anal., vol. 24, pp.  712-738, 1993.
  27. O. Axelsson, Iterative Solution Methods, Cambridge, MA: Cambridge Univ. Press, 1996.