2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Accurate Model of Arbitrary Wire Antennas in Free Space, Above or Inside Ground

Tie Jun Cui, Member, IEEE and Weng Cho Chew Fellow, IEEE

Page 482.

Abstract:

An accurate model of wire antennas in free space, above or inside lossy ground is presented in which the current is assumed to flow on the surface of the wire and the testing is also performed on the surface. To replace the traditional delta-gap source, a more accurate source model is developed by using the Huygens' principle. From this principle and reciprocity theorem,a variational formulation of the input admittance is derived. When the triangle function is chosen as both basis and weighting functions, all the elements of impedance matrix and source vector are formulated in closed forms, which can be rapidly computed. Several numerical results are given. Comparing with measured data, both the current distribution and input impedance by this model are more accurate than those of delta-gap model.

References

  1. H. C. Pocklington, "Electrical oscillations in wire", Cambridge Philos. Soc. Proc., vol. 9, pp.  324-332, 1897.
  2. A. Sommerfeld, "Uber die ausbreitung der wellen in der drahtlosen telegraphie", Annalen der Physik (4th Folge), vol. 28, pp.  665-736,  1909.
  3. E. Hallen, "Theoretical investigations into the transmitting and receiving qualities of antennae,"in Nova Acta Regiae Soc. Sci. Upsaliensis , 1938, pp.  1-44. 
  4. R. W. P. King and C. W. Harrison Jr., "The distribution of current along a symmetric center-driven antenna", Proc. IRE, vol. 31, pp.  548-567, Oct.  1943.
  5. C. T. Tai, "A new interpretation of the integral equation formulation of cylindrical antennas", IRE Trans. Antennas Propagat., vol. AP-3, pp.  125-127, Feb.  1955.
  6. J. H. Richmond, "A wire-grid model for scattering by conducting bodies", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  782-786, Nov.  1966.
  7. R. F. Harrington, Field Computation by Moment Methods, New York: McMillan, 1968.
  8. C. M. Butler and D. R. Wilton, "Analysis of various numerical techniques applied to thin-wire scatterers", IEEE Trans. Antennas Propagat., vol. AP-23, pp.  534-540,  1975.
  9. R. B. Mack, "A study of circular arrays", Harvard University, Cruft Lab. Tech. Rep. 381-386, May 1963.
  10. R. W. P. King, G. S. Smith, M. Owens and T. T. Wu, Antennas in Matter-Fundamental, Theory, and Applications, Cambridge, MA: MIT Press, 1981, pp.  150-156. 
  11. R. S. Elliott, Antenna Theory and Design, Englewood Cliffs, NJ: Prentice-Hall, 1981, p.  318. 
  12. Y. T. Lo and S. W. Lee (Eds, Antenna Handbook: Theory, Applications, and Design, New York: Van Nostrand Reinhold, 1988.
  13. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed.   New York: Wiley, 1997.
  14. A. Banos, Dipole Radiation in the Presence of a Conducting Half-Space, Oxford: U.K.: Pergamon Press, 1966.
  15. D. C. Chang and J. R. Wait, "Appraisal of near-field solutions for a Hertzian dipole over a conducting half-space", Can. J. Phys., vol. 48, pp.  737-743,  1970.
  16. E. K. Miller, A. J. Poggio, G. J. Burke and E. S. Selden, "Analysis of wire antennas in the presence of a conducting half-space: Part I-The vertical antenna in free space", Can. J. Phys., vol. 50, pp.  879-888, 1972.
  17. D. C. Chang and R. Fisher, "A unified theory on radiation of a vertical electric dipole above a dissipative earth", Radio Sci., vol. 9, pp.  1129-1138,  1974.
  18. S. M. Ali and S. F. Mahmoud, "Electromagnetic fields of buried sources in stratified anisotropic media", IEEE Trans. Antennas Propagat., vol. AP-27, pp.  671-678, Sept.  1979.
  19. L. N. An and G. S. Smith, "The horizontal circular loop antenna near a planar interface", Radio Sci., vol. 17, pp.  483-502, 1982.
  20. Y. Rahmat-Samii, R. Mittra and P. Parhami, "Evaluation of Sommerfeld integrals for lossy half-space problems", Electromagn., vol. 1, pp.  1-28, 1981 .
  21. G. J. Burke, A. J. Poggio, J. C. Logan and J. W. Rockway, "NEC-Numerical electromagnetic code for antennas and scattering", in IEEE AP-S Int. Symp. Dig., Seattle, WA, June 1979, pp.  147- 150. 
  22. G. J. Burke, E. K. Miller, J. N. Brittingham, D. L. Lager, R. J. Lytle and J. T. Okada, "Computer modeling of antennas near the ground", Electromagn., vol. 1, pp.  29-49, 1981.
  23. K. A. Michalski and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations", IEEE Trans. Antennas Propagat., vol. 45, pp.  508-519, Mar.  1997.
  24. J. S. Zhao, W. C. Chew, C. C. Lu, E. Michielssen and J. M. Song, "Thin-stratified medium fast-multipole algorithm for solving microstrip structures", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  395-403, Apr.  1998.
  25. T. J. Cui and W. C. Chew, "Fast evaluation of Sommerfeld integrals for EM wave scattering and radiation by three-dimensional buried objects", IEEE Trans. Geosci. Remote Sensing, vol. 37, pp.  887 -900, Mar.  1999.
  26. T. J. Cui and W. C. Chew, "Modeling of arbitrary wire antennas above ground", IEEE Trans. Geosci. Remote Sensing, vol. 38, pp.  357-365, Jan.  2000.
  27. W. C. Chew, Waves and Fields in Inhomogeneous Media, 2nd ed.   Piscataway, NJ: IEEE Press, 1995.
  28. W. C. Chew, Z. P. Nie, Q. H. Liu and Y. T. Lo, "Analysis of a probe-fed microstrip disk antenna", Proc. Inst. Elect. Eng., vol. 138, pp.  185-191,  Apr.  1991.