2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Dispersion Compensation for Huygens' Sources and Far-Zone Transformation in FDTD

Torleif Martin, Member, IEEE and Lars Pettersson Member, IEEE

Page 494.

Abstract:

The equivalence principle is utilized for generation of both incident plane waves and for near-to far-zone transformation in the finite-difference time-domain (FDTD) method. Small errors will appear due to numerical dispersion when a plane wave is generated by Huygens' sources using an analytical expression for the incident field. These errors can be derived from the numerical dispersion relation in the frequency domain. By using a second-order approximation of the numerical wavenumber it is shown that a simple approximative time-domain compensation procedure for the dispersion can be derived. This has been implemented in a Huygens' source routine and in a time-domain near-to far-zone transformation routine. It is shown that this compensation significantly reduces the errors produced when calculating far-zone scattered fields of low amplitude. It is also shown that it is sufficient to compensate either the Huygens' sources or the time-domain near-to far-zone transformation with respect to dispersion. For validation, plane wave propagation through empty space and scattering of a dipole have been studied.

References

  1. P. G. Petropoulos, "Phase error analysis control for FDTD methods of second and fourth order accuracy", IEEE Trans. Antennas Propagat., vol. 42, pp.  859-862, June  1994.
  2. J. Svigelj and R. Mittra, "Grid dispersion error using the nonuniform orthogonal finite-difference-Time domain method", Microwave Opt. Technol. Lett., vol. 10, no. 4, pp.  199-201, Nov.  1995.
  3. J. R. Represa, C. Pereira, M. Panizo and F. Tadeo, "A simple demonstration of numerical dispersion under FDTD", IEEE Trans. ED, vol. 40, pp.  98-102, July  1997.
  4. J. A. Pereda, O. García, A. Vegas and A. Prieto, "Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics", IEEE Microwave Guided Wave Lett., vol. 8, pp.  245-247, July  1998.
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA: Artech House, 1995.
  6. O. Arikan, U. Oguz and L. Gurel, "An efficient and accurate technique for the incident-wave excitation in the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 46, no. 6, pp.  869-882, June  1998.
  7. T. Martin, "An improved near-to far-zone transformation for the finite-difference time-domain method", IEEE Trans. Antennas Propagat., vol. 46, pp.  1263-1271, Sept.  1998.
  8. D. E. Merewether, R. Fisher and F. W. Smith, "On implementing a numeric Huygens' source scheme in a finite difference program to illuminate scattering bodies", IEEE Trans. Nucl. Sci., vol. 27, no. 6, pp.  1829-1833, Dec.  1980.
  9. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp.  185-200, 1994.
  10. R. J. Luebbers, K. S. Kunz, M. Schneider and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation", IEEE Trans. Antennas Propagat., vol. 39, pp.  429-433, Apr.  1991.