2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Electromagnetic Diffraction of an Obliquely Incident Plane Wave by a Right-Angled Anisotropic Impedance Wedge with a Perfectly Conducting Face

Giuliano Manara, Senior Member, IEEE and Paolo Nepa Member, IEEE

Page 547.

Abstract:

The diffraction of an arbitrarily polarized electromagnetic plane wave obliquely incident on the edge of a right-angled anisotropic impedance wedge with a perfectly conducting face is analyzed. The impedance tensor on the loaded face has its principal anisotropy axes along directions parallel and perpendicular to the edge, exhibiting arbitrary surface impedance values in these directions. The proposed solution procedure applies both to the exterior and the interior right-angled wedges. The rigorous spectral solution for the field components parallel to the edge is determined through the application of the Sommerfeld-Maliuzhinets technique. A uniform asymptotic solution is provided in the framework of the uniform geometrical theory of diffraction (UTD). The diffracted field is expressed in a simple closed form involving ratios of trigonometric functions and the UTD transition function. Samples of numerical results are presented to demonstrate the effectiveness of the asymptotic expressions proposed and to show that they contain as limit cases all previous three-dimensional (3-D) solutions for the right-angled impedance wedge with a perfectly conducting face.

References

  1. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics-IEE Electromagn. Wave Ser., London: U.K.: Inst. Elect. Eng., 1995,vol. 41.
  2. S. A. Tretyakov, "On the homogenization of dense planar arrays of scatterers", Electromagn., vol. 19, pp.  201 -210, 1999.
  3. N. Marcuvitz, Waveguide Handbook, 2nd ed.   London: U.K.: Inst. Elect. Eng., Peter Peregrinus, 1995, p.  280. 
  4. N. V. Shuley and R. J. Langley, "Method for treatment of finite-sized dichroic structures using a surface impedance approach", Electron. Lett., vol. 24, no.  12, pp.  728-729, 1988.
  5. K. W. Whites and R. Mittra, "An equivalent boundary-condition model for lossy planar periodic structures at low frequencies", IEEE Trans. Antennas Propagat., vol. 44, pp.  1617-1628, Dec.  1996.
  6. G. Manara, P. Nepa and G. Pelosi, "EM scattering from anisotropic impedance wedges at oblique incidence-Application to artificially hard and soft surfaces", Special Issue Centennial Sommerfeld's Diffraction Problem-Electromagn. , vol. 18, no. 2, pp.  117-133, 1998.
  7. R. G. Rojas, "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces", IEEE Trans. Antennas Propagat., vol. 36, pp.  956-970, July  1988.
  8. V. G. Vaccaro, "Electromagnetic diffraction from a right-angled wedge with soft conditions on one face", Opt. Acta, vol. 28, no.  3, pp.  293-311, 1981.
  9. G. Manara, P. Nepa and G. Pelosi, "Electromagnetic scattering by a right angled anisotropic impedance wedge", Electron. Lett., vol. 32, no.  13, pp.  1179-1180, 1996.
  10. G. Manara, P. Nepa and G. Pelosi, "A UTD solution for plane wave diffraction at an edge in an artificially hard surface: Oblique incidence case", Electron. Lett., vol. 31, no. 19, pp.  1649-1650, 1995.
  11. P.-S. Kildal, "Artificially hard and soft surfaces in electromagnetics", IEEE Trans. Antennas Propagat., vol. 38, pp.  1537-1544, Oct.  1990.
  12. G. Manara and P. Nepa, "Electromagnetic scattering from a right-angled anisotropic impedance wedge with a perfectly conducting face", in Nat. Radio Sci. Meet., Boulder, CO, Jan. 1998, p.  237. 
  13. G. D. Maliuzhinets, "Excitation, reflection and emission of surface waves from a wedge with given face impedances", Sov. Phys. Dokl., no. 3, pp.  752-755, 1958.
  14. G. D. Maliuzhinets, "Inversion formula for the Sommerfeld integral", Sov. Phys. Dokl., no. 3, pp.  52-56, 1958.
  15. R. G. Kouyoumjian, G. Manara, P. Nepa and B. J. E. Taute, "The diffraction of an inhomogeneous plane wave by a wedge", Radio Sci., vol. 31, no. 6, pp.  1387 -1397, Nov./Dec.  1996.
  16. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,", Proc. IEEE, vol. 62, pp.  1448-1461, Nov.  1974.
  17. G. Manara, P. Nepa, R. G. Kouyoumjian and B. J. E. Taute, "The diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium", IEEE Trans. Antennas Propagat., vol. 46, pp.  1753-1755, Nov.  1998.