2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Theory of Line-Source Radiation from a Metal-Strip Grating Dielectric-Slab Structure

Hung-Yu David Yang, Fellow, IEEE and David R. Jackson Fellow, IEEE

Page 556.

Abstract:

This paper describes the fundamental theory of line-source radiation from a source on a dielectric slab backed by a metal-strip grating. A continuous phased-array (CPA) method is applied to treat the analytic and numerical problems of antenna interaction with periodic structures. Both TE and TM mode cases for a one-dimensional strip grating are investigated. It is found that the strip grating on the dielectric surface may result in surface wave elimination and may also be used to support leaky waves. It is shown that high-efficiency and high-gain antennas on a dielectric substrate are possible with such metal-strip gratings.

References

  1. T. K. Wu, Ed., Frequency Selective Surfaces and Grid Arrays, New York: Wiley, 1995.
  2. R. J. Mittra, C. H. Chan and T. A. Cwik, "Techniques for analyzing frequency selective surfaces-A review", in Proc. IEEE, vol. 76, Dec. 1988, pp.  1593 -1614. 
  3. J. P. Montgomery, "Scattering by an infinite periodic array of thin conductors on a dielectric sheet", IEEE Trans. Antennas Propagat., vol.  AP-23, pp.  70-75, Jan.  1975.
  4. H. A. Kalhor, "Electromagnetic scattering by a dielectric slab loaded with a periodic array of strips over a ground plane", IEEE Trans. Antennas Propagat., vol. 36, pp.  147-151, Jan.  1988.
  5. A. L. Adonina and V. P. Shestopalov, "Diffraction of electromagnetic waves obliquely incident on a plane metallic grating with a dielectric slab", Soviet Phys.-Tech. Phys., vol. 8, no. 6, pp.  479-486, December  1963.
  6. A. Ip and D. R. Jackson, "A leaky-wave antenna using a two-dimensional periodic array of metal patches", in IEEE Int. Symp. Antennas Propagat. Dig. , Newport Beach, CA, June 1995, pp.  1652-1655. 
  7. C. N. Hu and C.-K. Tzuang, "Microstrip leaky-mode antenna array", IEEE Trans. Antennas Propagat., vol. 45, pp.  1698-1699, Nov.  1997 .
  8. A. A. Oliner and K. S. Lee, "Microstrip leaky-wave strip antennas", in IEEE Int. Symp. Antennas Propagat. Dig., Philadelphia, PA, June 1986, pp.  443-446. 
  9. M. Kim, J. R. Rosebberg, R. P. Smith, R. M. Weikle, J. B. Hacker, M. P. Delisio and D. B. Rutledge, "A grid amplifier", IEEE Microwave Guided Wave Lett., vol. 1, pp.  322-324, Nov.  1991.
  10. J. W. Mink, "Quasioptical power combining of solid-state millimeter-wave sources", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  273-279, Feb.  1986.
  11. S. C. Bundy and Z. B. Popovic, "A generalized analysis for grid oscillator design", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2486-2491, Dec.  1994.
  12. S. W. Lee, "Radiation from an infinite aperiodic array of parallel-plate waveguide", IEEE Trans. Antennas Propagat., vol. AP-15, pp.  598-606,  Sept.  1967.
  13. V. Galindo, "A generalized approach to a solution of aperiodic arrays and modulated surfaces", IEEE Trans. Antennas Propagat., vol. AP-16, pp.  424-429, July  1968.
  14. Y. T. Lo, "Random periodic arrays", Radio Sci., vol. 3, no. 5, May  1968.
  15. R. A. Sigelmann and A. Ishimaru, "Radiation from aperiodic structures excited by an aperiodic source", IEEE Trans. Antennas Propagat., vol. AP-13, pp.  354-364,  May  1965.
  16. C. M. Bender and S. A. Orszag, Advanced Mathematics Methods for Scientists and Engineers, New York: McGraw-Hill, 1978, p.  279. 
  17. N. G. Alexopoulos and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  807-816, Aug.  1984.
  18. R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press, 1991, p.  627. 
  19. R. E. Collin, Foundations for Microwave Engineering, 2nd ed.   New York: McGraw-Hill, 1992, p.  565 .