2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

A Path Integral Time-Domain Method for Electromagnetic Scattering

Robert D. Nevels, Jeffrey A. Miller and Richard E. Miller

Page 565.

Abstract:

A new full wave time-domain formulation for the electromagnetic field is obtained by means of a path integral. The path integral propagator is derived via a state variable approach starting with Maxwell's differential equations in tensor form. A numerical method for evaluating the path integral is presented and numerical dispersion and stability conditions are derived and numerical error is discussed. An absorbing boundary condition is demonstrated for the one-dimensional (1-D) case. It is shown that this time domain method is characterized by the unconditional stability of the path integral equations and by its ability to propagate an electromagnetic wave at the Nyquist limit,two numerical points per wavelength. As a consequence the calculated fields are not subject to numerical dispersion. Other advantages in comparison to presently popular time-domain techniques are that it avoids time interval interleaving and it does not require the methods of linear algebra such as basis function selection or matrix methods.

References

  1. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965.
  2. C. Huang and R. D. Nevels, "A closed-form multi-dimensional free space Green's function by the path integral method", Microwave Opt. Technol. Lett., vol. 5, no. 5, pp.  225-227, May  1992.
  3. R. D. Nevels, Z. Wu and C. Huang, "Feynman path integral for an infinite potential barrier", Phys. Rev. A, vol. 48, no. 5, pp.  3445-3451, Nov.  1993.
  4. J. B. Keller, "Geometrical theory of diffraction", J. Opt. Soc. Amer., vol. 52, no. 2, pp.  116-130, Feb.  1962.
  5. J. B. Keller and D. W. McLaughlin, "The Feyman integral", The Amer. Math. Monthly, vol. 82, no. 5, pp.  451-456, 1975.
  6. V. S. Bushlaev, "Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t --> 0. Applications to diffraction,"in Topics in Mathematical Physics, M. Sh. Birman, Ed. New York: Consultants Bureau, 1968,vol. 2.
  7. V. I. Klyatskin and V. I. Tatarskii, "The parabolic equation approximation for propagation of waves in a random medium with random inhomogeneities", Sov. Phys. JETP, vol. 31, no. 2, pp.  335-339, 1970.
  8. P. L. Chow, "A function phase-integral method and applications to the laser beam propagation in random media", J. Stat. Phys., vol. 12, no.  2, pp.  93-109, 1975.
  9. R. Dashen, "Path integrals for waves in random media", J. Math. Phys., vol. 20, no. 5, pp.  894-920, 1979.
  10. V. U. Zavorotny, "Strong fluctuations of electromagnetic waves in a random medium with finite longitudinal correlation of the inhomogeneities", Sov. Phys. JETP, vol. 48, no. 1, pp.  27-31, 1978.
  11. I. M. Besieris, "Wave-kinetic method, phase-space path integrals and stochastic wave propagation", J. Opt. Soc. Amer. A, vol. 2, no. 12, pp.  2092-2099, Dec.  1985.
  12. J. Gozani, "Two-scale expansion of wave propagation in a random medium", Comp. Phys. Comm., vol. 65, no. 1-3, pp.  117-120, 1991.
  13. M. Eve, "The use of path integrals in guided wave theory", Proc. Roy. Soc. London, vol. 347, pp.  405-417,  1976.
  14. C. C. Constantinou and R. C. Jones, "Path-integral analysis of tapered, graded-index waveguides", J. Opt. Soc. Amer. A, vol. 8, no. 8, pp.  1240-1244, Aug.  1991.
  15. R. H. Hardin and F. D. Tappet, "Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations", SIAM Rev., vol. 15, p.  423, 1973.
  16. H. V. Hitney, "A practical tropospheric scatter model using the parabolic equation", IEEE Trans. Antennas Propagat., vol. 41, pp.  905-909,  July  1993.
  17. G. D. Dockery and J. R. Kuttler, "An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation", IEEE Trans. Antennas Propagat., vol. 44, pp.  1592-1599, Dec.  1996.
  18. R. D. Nevels, C. Huang and Z. Wu, "The Fourier transform path integral method-A numerical technique for scalar scattering in inhomogeneous regions", Proc. Inst. Elect. Eng., pp.  488-492, Nov.  1993 .
  19. G. Barton, Elements of Green's Functions and Propagation, Oxford: U.K.: Oxford Sci. Clarendon, 1989.
  20. P. M. DeRusso, R. J. Roy, C. M. Close and A. A. Desrochers, State Variables for Engineers, New York: Wiley, 1998.
  21. E. O. Brigham, The Fast Fourier Transform, Englewood Cliffs, NJ: Prentice-Hall, 1974.
  22. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Computat. Phys., vol. 114, pp.  185-200, 1994.