2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Signal-Processing Techniques to Reduce the Sinusoidal Steady-State Error in the FDTD Method

Levent Gürel, Senior Member, IEEE and Uğur Oğuz

Page 585.

Abstract:

Techniques to improve the accuracy of the finite-difference time-domain (FDTD) solutions employing sinusoidal excitations are developed. The FDTD computational domain is considered as a sampled system and analyzed with respect to the aliasing error using the Nyquist sampling theorem. After a careful examination of how the high-frequency components in the excitation cause sinusoidal steady-state errors in the FDTD solutions, the use of smoothing windows and digital low-pass filters is suggested to reduce the error. The reduction in the error is demonstrated for various cases.

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, Apr.  1966.
  2. A. Taflove, "Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures", Wave Motion, vol. 10, no.  6, pp.  547-582, 1988.
  3. A. Taflove and K. R. Umashankar, "Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section", Proc. IEEE , vol. 77, pp.  682-699, May  1989.
  4. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA: Artech House, 1995.
  5. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL: CRC, 1993 .
  6. A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  623-630, Aug.  1975.
  7. A. Taflove and M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave irradiated human eye", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.  888-896, Nov.  1975.
  8. A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems", IEEE Trans. Electromagn. Compat., vol. EMC-22, pp.  191-202, Feb.   1980.
  9. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations", IEEE Trans. Electromagn. Compat., vol. EMC-23, pp.  377-382, Apr.  1981.
  10. K. R. Umashankar and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects", IEEE Trans. Electromagn. Compat., vol. EMC-24, pp.  397-405, Apr.  1982.
  11. A. Taflove and K. Umashankar, "Radar cross section of general three-dimensional scatterers", IEEE Trans. Electromagn. Compat., vol. EMC-25, pp.  433-440, Apr.  1983.
  12. A. Taflove, K. R. Umashankar and T. G. Jurgens, "Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  662-666, June  1985.
  13. G. J. A. van Gennip, "Theory and applications of the three-dimensional finite-difference time-domain method", TNO Phys. Electron. Lab., The Hague, The Netherlands, Tech. Rep. FEL-92-B190, June 1992.
  14. K. L. Shlager and J. B. Schneider, "A selective survey of the finite-difference time-domain literature", IEEE Antennas Propagat. Mag., vol. 37, pp.  39-56,  Apr.  1995.
  15. J.-P. Bèrenger, "A perfectly matched layer for the absorption of electromagnetics waves", J. Comput. Phys., vol. 114, no. 1, pp.  185-200, 1994.
  16. J.-P. Bèrenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems", IEEE Trans. Antennas Propagat., vol. 44, pp.  110-117, Jan.  1996.
  17. J.-P. Bèrenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 127, pp.  363-379, 1996.
  18. C. M. Furse, S. P. Mathur and O. P. Gandhi, "Improvements to the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  919-927, July  1990.
  19. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
  20. R. A. Gabel and R. A. Roberts, Signals and Linear Systems, New York: Wiley, 1973.
  21. F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform", Proc. IEEE, vol. 66, pp.  51-83,  Jan.  1978.
  22. R. J. Luebbers, K. S. Kunz, M. Schneider and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation", IEEE Trans. Antennas Propagat., vol. 39, pp.  429-433, Apr.  1991.
  23. D. E. Merewether, R. Fisher and F. W. Smith, "On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies", IEEE Trans. Nucl. Sci., vol. 27, pp.  1829-1833, June  1980 .
  24. U. Oğuz and L. Gürel, "Interpolation techniques to improve the accuracy of the incident-wave excitations in the FDTD method", Radio Sci., vol. 32, no.  6, pp.  2189-2199, Nov./Dec.  1997.
  25. U. Oğuz, L. Gürel and O. Arıkan, "An efficient and accurate technique for the incident-wave excitations in the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  869-882, June  1998.
  26. L. R. Rabiner, J. H. McClellan and T. W. Parks, "FIR digital filter design techniques using weighted Chebyshev approximations", Proc. IEEE, vol. 63, pp.  595-610,  Apr.  1975.
  27. T. W. Parks and C. S. Burrus, Digital Filter Design, New York: Wiley, 1987.
  28. J. N. Little and L. Shure, MATLAB Signal Processing Toolbox User's Guide, Natick, MA: MathWorks, 1992.