2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

A Truncated Floquet Wave Diffraction Method for the Full Wave Analysis of Large Phased Arrays- Part I: Basic Principles and 2-D Cases

Andrea Neto, Stefano Maci, Senior Member, IEEE Giuseppe Vecchi, Member, IEEE and Marco Sabbadini

Page 594.

Abstract:

This two-part sequence deals with the formulation of an efficient method for the full wave analysis of large phased-array antennas. This is based on the method of moments (MoM) solution of a fringe integral equation (IE) in which the unknown function is the difference between the exact solution of the finite array and that of the associated infinite array. The unknown currents can be interpreted as produced by the field diffracted at the array edge, which is excited by the Floquet waves (FW's) pertinent to the infinite configuration. Following this physical interpretation, the unknown in the IE is efficiently represented by a very small number of basis functions with domain on the entire array aperture. In order to illustrate the basic concepts,the first part of this sequence deals with the two-dimensional example of a linearly phased slit array. It is shown that the dominant phenomenon for describing the current perturbation with respect to the infinite array is accurately represented in most cases by only three diffracted-ray-shaped unknown functions. This also permits a simple interpretation of the element-by-element current oscillation, which was recently described by other authors. The second part of this paper deals with the appropriate generalization of this method to three-dimensional (3-D) arrays.

References

  1. Amitay, W. Galindo and C. P. Wu, Theory and Analysis of Phased Array Antennas, New York: Wiley, 1972.
  2. A. Ishimaru, R. J. Coe, G. E. Miller and W. P. Geren, "Finite periodic approach to large scanning array problems", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  1213-1220, July  1985.
  3. A. Skrivervik and J. Mosig, "Finite planed array of microstrip patch antennas: The infinite array approach", IEEE Trans. Antennas Propagat., vol. 40, pp.  579-582, May  1992.
  4. M. Johansson and J. Sanford, "Large finite periodic strip array", in AP-Symp., Baltimore, MD, July 1996.
  5. L. B. Felsen and L. Carin, "Diffraction theory of frequency and time domain scattering by weakly aperiodic truncated thin wire gratings", J. Opt. Soc. Amer., pp.  1291-1306, Feb.  1994.
  6. L. Carin and L. B. Felsen, "Time harmonic and transient scattering by finite periodic flat strip arrays: Hybrid Ray-Floquet mode-MoM algorithm", IEEE Trans. Antennas Propagat., vol. 41, pp.  412-421, Apr.  1993 .
  7. L. Carin, L. B. Felsen and T.-T. Hsu, "High-frequency fields excited by truncated arrays of nonuniformly distributed filamentary scatterers on an infinite dielectric grounded slab: Parametrizing leaky mode-Floquet mode interaction", IEEE Trans. Antennas Propagat., vol. 44, pp.  1-11, Jan.  1996.
  8. F. Capolino, M. Albani, S. Maci and R. Tiberio, "High-frequency analysis of an array of line sources on a truncated ground-plane", IEEE Trans. Antennas Propagat., vol. 46, pp.  570-578, Apr.  1998.
  9. R. C. Hansen and D. Gammon, "A Gibsian model for finite scanned arrays", IEEE Trans. Antennas Propagat., vol. 44, pp.  243-248, Feb.  1996.
  10. L. Carin and L. B. Felsen, "Efficient analytical-numerical modeling of ultra-wideband pulsed plane wave scattering from a large strip grating", Int. J. Numer. Modeling, vol. 6, pp.  3-17, 1993.
  11. F. Capolino, M. Albani, S. Maci and L. B. Felsen, "Frequency domain Green's function for a planar periodic semi-infinite phased array. Part I: Truncated Floquet wave formulation", IEEE Trans. Antennas Propagat., vol. 48, pp.  67-74, Jan.  2000.
  12. F. Capolino, M. Albani, S. Maci and L. B. Felsen, "Frequency domain Green's function for a planar periodic semi-infinite phased array. Part II: Diffracted wave phenomenology", IEEE Trans. Antennas Propagat., vol. 48, pp.  75-85,  Jan.  2000.
  13. P. Ya. Ufimtsev, "Elementary edge waves and the physical theory of diffraction", Electromagnetics, vol. 11, no. 2, pp.  125-159, April/June  1991.
  14. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface", Proc. IEEE, vol. 62, pp.  1448-1461,  Nov.  1974.