2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 4, April 2000

Table of Contents for this issue

Complete paper in PDF format

Application of the Matrix Pencil Method for Estimating the SEM (Singularity Expansion Method) Poles of Source-Free Transient Responses from Multiple Look Directions

Tapan Kumar Sarkar, Fellow, IEEE Sheeyun Park, Member, IEEE Jinhwan Koh and Sadasiva M. Rao

Page 612.

Abstract:

In this paper, the matrix pencil method has been utilized for estimating the natural resonances from different transient responses recorded along multiple look directions as a function of time after the incident field has passed the structure. The novelty of this article is that a single estimate for all the poles are done utilizing multiple transient waveforms emanating from the structure along multiple look directions. The SEM poles are independent of the angle at which the transient response is recorded. The only difference between the various waveforms are that the residues at the various poles are of different magnitudes. Some of the residues may even be zero for some of the poles indicating that the contribution from certain SEM poles may not be significant along that look direction. Here all the waveforms are utilized providing a single estimate for the poles without performing an arithmetic mean of the various waveforms.

References

  1. C. E. Baum, "The singularity expansion method,"in Transient Electromagnetic Fields, L. B. Felsen, Ed. New York: Springer-Verlag, 1976.
  2. E. K. Miller, "Time domain modeling in electromagnetics", J. Electromagn. Waves Applicat., vol. 8, no. 9-10, pp.  1125-1172, 1994 .
  3. O. M. Pereira-Filho and T. K. Sarkar, "Using the matrix pencil method to estimate the parameters by a sum of complex exponentials", IEEE Antennas Propagat. Mag., vol. 37, pp.  48-55, Feb.  1995.
  4. Y. Hua and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise", IEEE Trans. Acoust. Speech Signal Processing, vol. 38, pp.  814-824, May  1990.
  5. Y. Hua and T. K. Sarkar, "Generalized pencil-of-functions method for extracting the poles of an extracting the poles of an electromagnetic system from its transient response", IEEE Trans. Antennas Propagat., vol. 37, pp.  229-234, Feb.  1989.
  6. Y. Hua and T. K. Sarkar, "A perturbation property of the TLS-LP method", IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp.  2004-2005,  Nov.  1990.
  7. Y. Hua and T. K. Sarkar, "On the total least squares linear prediction method for frequency estimation", IEEE Trans. Acoust., Speech, Signal Processing , vol. 38, pp.  2186-2189, Dec.  1990.
  8. Y. Hua and T. K. Sarkar, "On SVD for estimating generalized eigenvalues of singular matrix pencil in noise", IEEE Trans. Acoust.,Speech, Signal Processing, vol. 39, pp.  892-900, April  1991 .
  9. D. A. Ksienski, "Pole and residue extraction from measured data in the frequency domain using multiple data sets", Radio Sci., pp.  13-19,  1985.
  10. D. A. Ksienski, "Numerical methods of noise reduction for frequency domain SEM", Electromagn., pp.  393 -405, 1984.
  11. Y. Hua and T. K. Sarkar, "Parameter estimation of multiple transient signals", Signal Processing, vol. 28, pp.  109-115, 1992.