2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Diagnosis of A rray Faults from Far-Field Amplitude-Only Data

O. M. Bucci, Fellow, IEEE Amedeo Capozzoli and G. D'Elia

Page 647.

Abstract:

The diagnosis of the faulty elements of a planar array from noisy far-field power pattern data is considered in the case of"on-off"faults. The possible ambiguities of the solutions are considered both in the theoretical and practical sense and are shown to be intrinsically less relevant than in the widely studied continuous case. The probability of the occurrence of the practical ambiguities is inferred from a number of numerical examples and is shown to be negligible in all cases of interest. An effective algorithm is presented here based on an intersection set finding approach and involving the minimization of a suitable objective functional. The global minimization of the functional has been successfully performed by applying a properly modified genetic algorithm. A number of numerical examples shows the effectiveness of the approach whose computational complexity essentially increases linearly with the array size.

References

  1. J. A. Lord, G. G. Cook and A. P. Anderson, "Reconstruction of the excitation of an array antenna from measured near-field intensity using phase retrieval", in Proc. Inst. Elect. Eng., vol. 139, 1992, pp.  392-396. 
  2. D. J. Rochblatt, P. H. Richter and T. Y. Otoshi, "Microwave performance calibration system for NASA's deep space network antennas-Part 2: Holography, alignment and frequency stability", in Proc. 10th Int. Conf. Antennas Propagat., vol. 1, Edinburgh, U.K.,April 1997, pp.  150-155. 
  3. N. H. Hurt, Phase Retrieval and Zero Crossing, Dodrecht: Germany: Kluwer, 1989.
  4. R. Horst, and P. M. Pardalos, Eds., "Handbook of Global Optimization", Kluwer, Dodrecht, Germany, 1995.
  5. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, Dodrecht: Germany: Kluwer, 1988.
  6. O. M. Bucci, G. D'Ella and M. Iovieno, "Diagnostica di schiere di antenne mediante algoritmi genetici", in XI Riunione Nazionale di Elettromagnetismo, Firenze, Italy, 1996.
  7. J. H. Seldin and J. R. Fienup, "Numerical investigation of the uniqueness of phase retrieval", J. Opt. Soc. Amer. A, vol. 7, no. 3, pp.  412-427, 1990.
  8. Y. M. Bruck and L. G. Sodin, "On the ambiguity of the image reconstruction problem", Opt. Communicat., vol. 30, no. 3, pp.  304-308, 1979.
  9. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
  10. G. Rudolph, "Convergence analysis of canonical genetic algorithms", IEEE Trans. Neural Networks, vol. 5, pp.  96 -101, Jan.  1994.
  11. J. Suzuki, "A Markov analysis on simple genetic algorithms", IEEE Trans. Syst., Man, Cybern., vol. 25, pp.  655-659, Apr.  1995.