2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

A Domain Decomposition Method for the Vector Wave Equation

Bruno Stupfel and Martine Mognot

Page 653.

Abstract:

A nonoverlapping domain decomposition method (DDM) is presented for the finite-element (FE) solution of electromagnetic scattering problems by inhomogeneous three-dimensional (3-D) bodies. The computational domain is partitioned into concentric subdomains on the interfaces of which conformal vector transmission conditions are prescribed and that can be implemented in the inhomogeneous part. The DDM is numerically implemented when a conformal vector absorbing boundary condition (ABC) is utilized on the outer boundary terminating the FE mesh, while employing the standard edge-based FE formulation. Then, numerical experiments are performed on a sphere and a cone sphere that emphasize the advantages of this technique in terms of memory storage and computing times, especially when the total number of unknowns is very large. Also, these numerical experiments serve as a severe test for the performances of the ABC.

References

  1. X. Yuan, "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  1053-1058, 1990.
  2. B. Stupfel, R. Le Martret, P. Bonnemason and B. Scheurer, "Solution of the scattering problem by axisymmetrical penetrable objects with a mixed boundary-element and finite-element method", in Proc. Journées Int. Antennes, Nice, France,Nov. 1990, pp.  116-119. 
  3. W. E. Boyse and A. A. Seidl, "A hybrid finite element method for near bodies of revolution", IEEE Trans. Magn., vol. 27, pp.  3833-3836, 1991.
  4. P. Soudais, "Computation of the electromagnetic scattering from complex 3D objects by a hybrid FEM/BEM method", J. Electromagn. Waves Appl., vol. 9, pp.  871-886, 1995.
  5. A. F. Peterson, "Absorbing boundary conditions for the vector wave equation", Microwave Opt. Tech. Lett., vol. 1, pp.  62-64, 1988 .
  6. J. Jin, The Finite Element Methods in Electromagnetics, New York: Wiley, 1993.
  7. B. Stupfel, "Absorbing boundary conditions on arbitrary boundaries for the scalar and vector wave equations", IEEE Trans. Antennas Propagat., vol.  42, pp.  773-780, 1994.
  8. F. Collino and P. Joly, "New absorbing boundary conditions for the finite element solution of 3-D Maxwell's equations", IEEE Trans. Magn., vol. 31, pp.  1696-1701,  1995.
  9. R. Cicchetti, "A class of exact and higher-order surface boundary conditions for layered structures", IEEE Trans. Antennas Propagat., vol. 44, pp.  249-259, 1996.
  10. B. Stupfel and M. Mognot, "Implementation and derivation of conformal absorbing boundary conditions for the vector wave equation", J. Electromagn. Waves Appl., vol. 12, pp.  1653-1677, 1998.
  11. Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, "A perfectly matched anistropic absorber for use as an absorbing boundary condition", IEEE Trans. Antennas Propagat., vol. 43, pp.  1460-1463, 1995.
  12. J. Y. Wu, D. M. Kingsland, J. F. Lee and R. Lee, "A comparison of anistropic PML to Bérenger's PML and its application to the finite-element method for electromagnetic scattering", IEEE Trans. Antennas Propagat., vol. 45, pp.  40-50, Jan.  1997.
  13. M. Kuzuoglu and R. Mittra, "Investigation of nonplanar perfectly matched absorbers for finite element mesh truncation", IEEE Trans. Antennas Propagat., vol. 45, pp.  474-486, 1997.
  14. F. L. Teixeira and W. C. Chew, "Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves", Microwave Opt. Tech. Lett., vol. 17, pp.  231-236, 1998.
  15. B. Després, Ph.D dissertation, Université Paris IX Dauphine, Paris, France, 1991.
  16. B. Després, "Domain decomposition method and the Helmholtz problem", in Proc. Int. Symp. Math. Numer. Aspects Wave Propagat. Phenomena, 1992, pp.  44-52. 
  17. B. Després, "Domain decomposition method and the Helmholtz problem (part II)", in Proc. 2nd Int. Conf. Math. Numer. Aspects Wave Propagat., 1993, pp.  197-206. 
  18. B. Després, "A domain decomposition method for the harmonic Maxwell equations,"in Iterative Methods in Linear Algebra, R. Beauwens, and P. de Groen, Eds. Amsterdam: The Netherlands: Elsevier, 1992, pp.  475-484. 
  19. V. V. Shaidurov and E. I. Ogorodnikov, "Some numerical method of solving Helmholtz equation wave equation", in Proc. Int. Symp. Math. Numer. Aspects Wave Propagat. Phenomena, 1992, pp.  73-79. 
  20. B. Stupfel, "A fast domain decomposition method for the solution of electromagnetic scattering by large objects", IEEE Trans. Antennas Propagat., vol. 44, pp.  1375-1385, 1996.
  21. B. Stupfel and B. Després, "A domain decomposition method for the solution of large electromagnetic scattering problems", J. Electromagn. Waves Appl., vol. 13, pp.  1553 -1568, 1999.
  22. P. Bonnemason and B. Stupfel, "Modeling high frequency scattering by axisymmetric perfectly or imperfectly conducting scatterers", Electromagn. , vol. 13, pp.  111-129, 1993.