2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

The Use of the Transfinite Interpolation in the Method of Moments Applied to Electromagnetic Scattering by Dielectric Cylinders

Philippe De Doncker

Page 661.

Abstract:

The method of moments (MoM) solution of electromagnetic scattering presents two major numerical difficulties: the number of unknowns and the computation time necessary to calculate the matrix elements. To circumvent these problems, a MoM using the transfinite interpolation and a reduced integration scheme is presented here. The so-called h and p versions of the new method are applied to the scattering of an electromagnetic wave by an infinite dielectric cylinder (TM case) in the Richmond's formulation. The transfinite and classical methods are compared in terms of the convergence rates of the radar cross section and of the total electric field inside the dielectric. The results confirm the superiority of the new schemes as predicted by the theory.

References

  1. R. F. Harrington, Field Computation by Moment Methods, New York: MacMillan, 1968.
  2. W. J. Gordon, "Blending-function methods of bivariate and multivariate interpolation and approximation", SIAM J. Numer. Anal., vol. 8, pp.  158-177, Mar.  1971.
  3. J. H. Richmond, "Scattering by a dielectric cylinder of arbitrary cross section shape", IEEE Trans. Antennas Propagat., vol. AP-13, pp.  334-341,  May  1965.
  4. R. D. Graglia, "The use of parametric elements in the moment method solution of static and dynamic volume integral equations", IEEE Trans. Antennas Propagat., vol. 36, pp.  636-646, May  1988.
  5. J. C. Cavendish, W. J. Gordon and C. A. Hall, "Ritz-Galerkin approximations in blending function spaces", Numer. Math., vol. 26, pp.  155 -178, 1976.
  6. A. G. Papagiannakis, "Application of a point-matching MoM reduced scheme to scattering from finite cylinders", IEEE Trans. Antennas Propagat., vol. 45, pp.  1545-1553, Sept.  1997.
  7. E. Yamashita, Analysis Methods for Electromagnetic Wave Problems, Boston, MA: Artech House, 1990.
  8. D. T. Bishop, D. M. Sullivan and O. M. Gandhi, "Comparison of the FFT conjugate gradient method and the finite difference time-domain method for the 2-D absorption problem", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp.  383-395, Apr.  1987.
  9. K. Umashankar and A. Taflove, Computational Electromagnetics, Boston, MA: Arctech House, 1993.
  10. D. E. Livesay and K. Chen, "Electromagnetic field induced inside arbitarily shaped biological bodies", IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp.  1273-1280, Dec.  1974.
  11. D. H. Schaubert, D. R. Wilson and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitarily shaped inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  77-85, Jan.  1984.
  12. C. Tsai, H. Massoudi and C. H. Durney, "A procedure for calculating fields inside arbitrarily shaped, inhomogeneous dielectric bodies using linear basis functions with the moment method", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  1131-1138, Nov.  1986.
  13. M. F. Cátedra, E. Gago and L. Nuño, "A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform", IEEE Trans. Antennas Propagat., vol. 37, pp.  528-537, May  1989.
  14. A. F. Peterson and P. W. Klock, "An improved MFIE formulation for TE-wave scattering from lossy, inhomogeneous dielectric cylinders", IEEE Trans. Antennas Propagat., vol. 36, pp.  45-49, Jan.  1988.
  15. J. W. Gordon and C. A. Hall, "Transfinite element methods: Blending functions interpolation over arbitrary curved element domains", Numer. Math., vol. 21, pp.  109-129, 1973.
  16. C. A. Hall, R. W. Luczak and A. G. Serdy, "Numerical solution of steady state heat flow problems over curved domains", ACM Trans. Math. Soft., vol. 2, pp.  257-274, Sept.  1976.
  17. W. J. Gordon, "An operator calculus for surface and volume modeling", IEEE Trans. Comput. Graphics Applicat., vol. CGA-3, pp.  18-22, Oct.  1983.
  18. C. A. Hall and J. Heinrich, "A finite element that satisfies boundary conditions exactly", J. Inst. Math. Applicat., vol. 21, pp.  237-250,  1978.
  19. L. P. Bos, J. E. Grabenstetter and K. Salkauskas, "Pseudotensor product interpolation and blending with families of univariate schemes", Comput.-Aided Geometric Design, vol. 13, pp.  429-440, 1996.
  20. M. Bercovier and E. Shilat, "Enhancement of Gordon-Coons interpolation by bubble-functions", Comput.-Aided Geometric Design, vol. 10, pp.  253-265,  1993.
  21. J. M. Jin, V. V. Liepa and C. T. Tai, "A volume-surface integral equation for electromagnetic scattering by inhomogeneous cylinders", J. Electromagn. Waves Applicat., vol. 2, pp.  573-588, 1988.
  22. P. De Doncker, "A transfinite moment method applied to electromagnetic scattering", Proc. PIERS'98, vol. 2, p.  606, July  1998.