2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

High-Frequency EM Scattering by Edges in Artificially Hard and Soft Surfaces Illuminated at Oblique Incidence

Giuliano Manara, Senior Member, IEEE Paolo Nepa, Member, IEEE and Giuseppe Pelosi Fellow, IEEE

Page 790.

Abstract:

Uniform high-frequency expressions describing the field scattered by edges in anisotropic impedance surfaces illuminated at oblique incidence are provided. The specific anisotropic impedance boundary condition considered here exhibits a vanishing surface impedance along a principal anisotropy axis and an arbitrary one in the orthogonal direction. In certain circumstances,this tensor surface impedance may represent an accurate model for describing the scattering properties of artificially hard and soft surfaces. In order to simplify the analysis but without losing pertinence with real problems,in all canonical configurations we consider a face of the wedge to be perfectly conducting. The anisotropic impedance face is characterized by a tensor surface impedance with the principal anisotropy axes parallel and perpendicular to the edge.

References

  1. P.-S. Kildal, "Artificially soft and hard surfaces in electromagnetics", IEEE Trans. Antennas Propagat., vol. 38, pp.  1537-1544, Oct.  1990.
  2. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas, London: U.K.: Peter Peregrinus Ltd., 1984 .
  3. D. G. Michelson and E. V. Jull, "Depolarizing trihedral corner reflectors for radar navigation and remote sensing", IEEE Trans. Antennas Propgat., vol. 43, pp.  513-518, May  1995.
  4. C. Gennarelli, G. Pelosi and G. Riccio, "Physical optics analysis of the field backscattered by a depolarizing trihedral corner reflector", Proc. Inst. Elect. Eng. Microwave, Antennas, Propagat., vol. 145, no. 3, pp.  218-231, June  1998.
  5. P.-S. Kildal, A. A. Kishk and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces", IEEE Trans. Antennas Propagat., vol. 44, pp.  1509-1520, Nov.  1996.
  6. Z. Ying, P.-S. Kildal and A. Kishk, "Study of different realizations and calculation models for soft surfaces by using a vertical monopole on a soft disk as a test bed", IEEE Trans. Antennas Propagat., vol. 44, pp.  1474-1481, Nov.  1996.
  7. J. A. Aas, "Plane-wave reflection properties of two artificially hard surfaces", IEEE Trans. Antennas Propagat., vol. 39, pp.  651-656,  May  1991.
  8. R. G. Kouyoumijan and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface", Proc. IEEE, vol. 62, pp.  1448-1461,  Nov.  1974.
  9. T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, London: U.K.: Inst. Elect. Eng. Electromagn. Wave Ser. 41, 1995.
  10. Z. Sipus, H. Merkel and P.-S. Kildal, "Grenn's functions for planar soft and hard surfaces derived by asymptotic boundary conditions", Inst. Elect. Eng. Proc. Microwave, Antennas, Propagat., vol. 144, no. 5, pp.  321-328, 1997.
  11. I. V. Lindell and P. P. Puska, "Reflection dyadic for the soft and hard surface with application to the depolarising corner reflector", Proc. Inst. Elect. Eng. Microwave, Antennas, Propagat., vol. 143, no.  5, pp.  417-421, Oct.  1996.
  12. A. J. Viitanen and P. P. Puska, "Reflection of obliquely incident plane wave from chiral slab backed by soft and hard surface", Inst. Elect. Eng. Proc. Microwave, Antennas, Propagat., vol. 146, no. 4, pp.  271-276, Aug.  1999.
  13. G. Manara, P. Nepa and G. M. Ottaviano, "A UTD solution for surface and leaky wave diffraction at the edge of a metallic wedge with a material coating", in 1996 IEEE AP-S Int. Symp. Dig., Baltimore, MD, July 1996, pp.  482-485. 
  14. G. Pelosi, G. Manara and P. Nepa, "Electromagnetic scattering by a wedge with anisotropic impedance faces", IEEE Antennas Propagat. Mag., vol. 40, pp.  29-35,  Dec.  1998.
  15. G. Manara, P. Nepa and G. Pelosi, "EM scattering from anisotropic impedance wedges illuminated at oblique incidence. The case of artificially hard and soft boundary conditions", Electromagn., vol. 18, no. 2, pp.  117-133, 1998.
  16. G. Manara, P. Nepa and G. Pelosi, "EM scattering by an anisotropic impedance half-plane with a perfectly conducting face illuminated at oblique incidence", in USNC/URSI Radio Sci. Meet. Dig., Orlando, FL, July 1999, p.  91. 
  17. G. D. Maliuzhinets, "Excitation, reflection and emission of surface waves from a wedge with given face impedances", Sov. Phys. Dokl., no. 3, pp.  752-755, 1958.
  18. A. V. Osipov and A. N. Norris, "The Maliuzhinets theory for scattering from wedge boundaries: A review", Wave Motion, vol. 29, no. 4, pp.  313 -340, 1999.
  19. G. Pelosi, S. Maci, R. Tiberio and A. Michaeli, "Incremental length diffraction coefficients for an impedance wedge", IEEE Trans. Antennas Propagat., vol. 40, pp.  1201-1210,  1992.
  20. A. H. Serbest, A. Buyukaksoy and G. Uzgoren, "Diffraction by a discontinuity formed by two anisotropic impedance half planes", Trans. IEICE, vol. E-74, pp.  1283-1287,  May  1991.
  21. T. Griesser and C. A. Balanis, "Reflections, diffractions and surface waves for an interior impedance wedge of arbitrary angle", IEEE Trans. Antennas Propagat., vol. 37, pp.  927-935, July  1989.
  22. R. G. Kouyoumjian, G. Manara, P. Nepa and B. J. E. Taute, "The diffraction of an inhomogeneous plane wave by a wedge", Radio Sci., vol. 31, no. 6, pp.  1387 -1398, Nov./Dec.  1996.
  23. R. Tiberio, G. Pelosi and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces", IEEE Trans. Antennas Propagat., vol. 33, pp.  867-872, Aug.  1985.