2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Regularization of the Moment Matrix Solution by a Nonquadratic Conjugate Gradient Method

Luc Knockaert, Member, IEEE and Daniël De Zutter Senior Member, IEEE

Page 812.

Abstract:

Inspired by Tikhonov regularization, a nonlinear conjugate gradient method is proposed with the purpose of simultaneously regularizing and solving the moment matrix equation. The procedure is based on a nonquadratic conjugate gradient algorithm with exact line search, restart, and rescale. Applied to the problem of TM scattering by perfectly conducting rectangular cylinders,the method is shown to exhibit a fast convergence rate.

References

  1. F. X. Canning and J. F. Scholl, "Diagonal preconditioners for the EFIE using a wavelet basis", IEEE Trans. Antennas Propagat., vol. 44, pp.  1239-1246,  Sept.  1996.
  2. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, New York: Wiley, 1983.
  3. M. Z. Nashed, "Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory", IEEE Trans. Antennas Propagat., vol. AP-29, pp.  220-231, Mar.  1981.
  4. J. R. Ringrose, Compact Non-Self-Adjoint Operators, London: U.K.: Van Nostrand, 1971.
  5. A. F. Peterson, C. F. Smith and R. Mittra, "Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm", IEEE Trans. Antennas Propagat., vol. 36, pp.  1177-1179, Aug.  1988.
  6. L. Knockaert, "A note on the relationship between the conjugate gradient method and polynomials orthogonal over the spectrum of a linear operator", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  1089-1091, Sept.  1987.
  7. G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD: Johns Hopkins Univ., 1996.
  8. G. C. Hsiao and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics", IEEE Trans. Antennas Propagat., vol. 45, pp.  316-328, Mar.  1997.
  9. R. J. Santos, "Equivalence of regularization and truncated iteration for general ill-posed problems", Linear Algebra Applicat., vol. 236, pp.  25-33, 1996.
  10. R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J., vol. 7, pp.  149-154, 1964.
  11. J. C. Gilbert and J. Nocedal, "Global convergence properties of conjugate gradient methods for optimization", SIAM J. Optimization, vol. 2, no. 1, pp.  21-42, Feb.  1992.
  12. A. Edelman and S. T. Smith, "On conjugate gradient-like methods for eigen-like problems", BIT, vol. 36, no. 3, pp.  494-508, Oct.  1996.
  13. M. J. D. Powell, "Restart procedures for the conjugate gradient method", Math. Programming, vol. 12, pp.  241-254, 1977.
  14. T. K. Sarkar, D. D. Weiner and V. K. Jain, "Some mathematical considerations in dealing with the inverse problem", IEEE Trans. Antennas Propagat., vol. AP-29, pp.  373-379,  Mar.  1981.
  15. E. Polak and G. Ribière, "Note sur la convergence de méthodes de directions conjuguées", Revue Française d'Informatique et de Recherche Opérationelle , vol. 16, pp.  35-43, 1969.
  16. R. L. Wagner and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations", IEEE Trans. Antennas Propagat., vol. 43, pp.  802-810,  Aug.  1995.