2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 5, May 2000

Table of Contents for this issue

Complete paper in PDF format

Rigorous Evaluation of the Vertex Effects on the Frequency-Dependent Circuit Parameters of an Open-Ended Microstrip Line

Sandrino Marchetti Member, IEEE

Page 817.

Abstract:

This study presents the original inclusion of right singular vertex conditions in integral equations solved by the method of moments for accurate evaluation of frequency-dependent microstrip discontinuity models required in microwave integrated circuits (MIC) and monolithic microwave integrated circuits (MMIC) design. The 90° wedges singularity function for the current density, weighted with a novel sampling function for"corner cells,"and the harmonic Green's function for shielded structures, is accurately and efficiently integrated in the conical geometry of the 90° sector. The frequency-dependent effective length and excess equivalent capacitance of a shielded open-ended microstrip line are calculated to a higher accuracy with respect to previous two-dimensional and three-dimensional"full wave analyses."

References

  1. T. Itoh, Ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures , New York: Wiley, 1989.
  2. S. Marchetti and T. Rozzi, "Electric field singularities at sharp edges of planar conductors", IEEE Trans. Antennas Propagat., vol. 39, pp.  1312-1320,  Sept.  1991.
  3. S. Marchetti and T. Rozzi, "H-field and J-current singularity at sharp edges in printed circuits", IEEE Trans. Antennas Propagat., vol. 39, pp.  1321-1331, Sept.  1991.
  4. T. Itoh, "Analysis of microstrip resonators", IEEE Trans. Microwave Theory Tech., vol. AP-22, pp.  946-952, Nov.  1974 .
  5. E. Hammerstad and F. Bekkadal, Microstrip Handbook,: Norway: Univ. Trondheim, 1975.
  6. C. Gupta, B. Easter and H. Gopinath, "Some results on the end effect of microstriplines", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  649-652, Sept.  1978.
  7. R. H. Jansen and N. H. L. Koster, "Accurate results on the effect of single and coupled microstrip lines for use in microwave circuit design", Arch. Elek. Ubertragung, vol. 34, pp.  453-459, 1980.
  8. L. P. Dunleavy and P. B. Katehi, "Shielding effects in microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1767-1774, Dec.  1988.
  9. H. A. Ghaly, J. Citerne and V. Fouad Hanna, "Complete dyadic Green functions for three-dimensional non radiating discontinuity analysis", Soc. Int. Symp. Antennas Propagat., pp.  874-877, June  1991.
  10. L. P. Dunleavy and P. B. Katehi, "A generalized method for analyzing shielded thin microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1758-1766, Dec.  1988.
  11. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, New York: Academic, 1980.
  12. P. B. Katehi and N. G. Alexopoulous, "Frequency-dependent characteristics of microstrip discontinuities in millimeter-waves integrated circuits", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  1029 -1035, Oct.  1985.
  13. E. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, New York: McGraw-Hill, 1953,vol. II.
  14. I. J. Bahl and P. Bhartia, Microstrip Antennas, Norwood, MA: Artech House, 1980.
  15. R. K. Hoffmann, Handbook of Microwave Integrated Circuits, Norwood, MA: Artech House, 1987.
  16. S. Marchetti, "Simplified conducting plane sector diffraction theory and EM fields singularities at sharp edges of printed circuits", J. Electromagn. Waves Applicat., vol. 11, pp.  675-688, 1997.