2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Image Reconstruction from TE Scattering Data Using Equation of Strong Permittivity Fluctuation

Jianglei Ma, Member, IEEE Weng Cho Chew, Fellow, IEEE Cai-Cheng Lu, Senior Member, IEEE and Jiming Song Senior Member, IEEE

Page 860.

Abstract:

Compared to the TM case, the inverse scattering problem for the TE incident field is more complicated due to its stronger nonlinearity. This work provides an effective method for the reconstruction of two-dimensional (2-D) inhomogeneous dielectric objects from TE scattering data. The algorithm applies the distorted Born iterative method to the integral equation of strong permittivity fluctuation to reconstruct scatterers with high-permittivity contrast. Numerical simulations are performed and the results show that the distorted Born iterative method (DBIM) for strong permittivity fluctuation (SPF-DBIM) converges faster and can obtain better reconstructions for objects with larger dimensions and higher contrasts in comparison with ordinary DBIM. A frequency hopping technique is also applied to further increase the contrast.

References

  1. W. C. Chew, Waves and Fields in Inhomogeneous Media, New York: Van Nostrand Reinhold, 1990.
  2. Y. M. Wang and W. C. Chew, "An iterative solution of two-dimensional electromagnetic inverse scattering problem", Int. J. Imag. Syst. Tech., vol. 1, pp.  100-108,  1989.
  3. W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method", IEEE Trans. Med. Imag. , vol. 9, pp.  218-225, June  1990.
  4. J. C. Bolomey and C. Pichot, "Microwave tomography: From theory to practical imaging systems", Int. J. Imag. Syst. Tech., vol. 2, pp.  144-156,  1990.
  5. N. Joachimowic, C. Pichot and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging", IEEE Trans. Antennas Propagat., vol. 39, pp.  1742-1752, Sept.  1991.
  6. M. Moghaddam and W. C. Chew, "Nonlinear two-dimensional velocity profile inversion using time domain data", IEEE Trans. Geosci. Remote Sensing, vol. 30, pp.  147-156, Jan.  1992.
  7. W. C. Chew and G. P. Otto, "Microwave imaging of multiple conducting cylinders using local shape functions", IEEE Microwave Guided Wave Lett., vol. 2, pp.  284-286, July  1992.
  8. G. P. Otto and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  137-141, Jan.  1994.
  9. A. Roger, "Newton-Kantorovich algorithm applied to an electromagnetic inverse problem", IEEE Trans. Antennas Propagat., vol. AP-29, pp.  232-238, Mar.  1981.
  10. D. Colton and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II", SIAM J. Appl. Math., vol. 46, pp.  506-523, 1986.
  11. C. C. Chiu and Y.-W. Kiang, "Inverse scattering of a buried conducting cylinder", Inverse Problem, vol. 7, pp.  187-202, 1991.
  12. R. E. Kleinman and P. M. Van Den Berg, "Nonlinearized approach to profile inversion", Int. J. Imag. Syst. Tech., vol. 2, pp.  119-126, 1990.
  13. K. Belkebir, R. E. Kleinman and Christian Pichot, "Microwave imaging-location and shape reconstruction from multifrequency scattering data", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  469-476, Apr.  1997.
  14. C. C. Chiu and P. T. Liu, "Image reconstruction of a complex cylinder illuminated by TE waves", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1921-1952, Oct.  1996.
  15. G. P. Otto and W. C. Chew, "Inverse scattering of H_z$ waves using local shape-function imaging: A T-matrix formulation", Int. J. Imag. Syst. Tech., vol. 5, pp.  22-27, 1994.
  16. L. Wen, R. E. Kleinman and P. M. Van Den Berg, "Two-dimensional profile inversion-The TE case", in Proc. 1995 URSI Int. Symp. Electromagn. Theory, St. Petersburg, Russia,July 1995, pp.  160-162. 
  17. B. J. Kooij and P. M. van den Berg, "Nonlinear inversion in TE scattering", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1704-17l2, Nov.  1998.
  18. L. Tsang, J. A. Kong and R. T. Shin, Theory of Microwave Remote Sensing, New York: Wiley, 1985.
  19. V. V. Tamoikin, "The average field in a medium having strong anisotropic inhomogeneities", Radiophys. Quantum Electron., vol. 14, pp.  228-233, 1971.
  20. A. D. Yaghjian, "Electric dyadic Green's functions in the source region", Proc. IEEE, vol. 68, pp.  248-263, Feb.  1980 .
  21. J. H. Richmond, "Scattering by a dielectric cylinder of arbitrary cross section shape", IEEE Trans. Antennas Propagat., vol. AP-13, pp.  334-341,  May  1965.
  22. J. H. Lin, "A study of iterative method on forward and inverse scattering problems", Ph.D. dissertation, Univ. Illinois at Urbana-Champaign, 1995.
  23. W. C. Chew and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies", IEEE Microwave Guided Lett., vol. 5, pp.  439-441, Dec.  1995.
  24. P. Zwamborn and P. M. van den Berg, "A weak form of the conjugate fradient FFT method for two-dimensional TE scattering problems", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  953-960, Apr.  1995 .