2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method

William A. Beck, Member, IEEE and Mark S. Mirotznik Member, IEEE

Page 887.

Abstract:

A simple technique is described for determining the stability and numerical dispersion of finite-difference time-domain (FDTD) calculations that are linear, second-order in space and time, and include dispersion by the discrete convolution method. The technique is applicable to anisotropic materials. Numerical examples demonstrate the accuracy of the technique for several anisotropic and/or dispersive materials.

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, 1966.
  2. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Boston, MA: Artech House, 1995.
  3. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method in Electromagnetics, Boca Raton, FL: CRC, 1993 .
  4. R. J. Luebbers and F. Hunsberger, "FDTD for N th-order dispersive media", IEEE Trans. Antennas Propagat., vol. 40, pp.  1297-1301,  1992.
  5. Remcom, XFDTD, www.remcominc.com Remcom, XFDTD, www.remcominc.com , Remcom, Inc., State College, PA, 1997.
  6. J. A. Pereda, O. Garcia, A. Vegas and A. Prieto, "Numerical dispersion and stability analysis of the FDTD technique in lossy dielectrics", IEEE Microwave Guided Lett., vol. 8, pp.  245-247, July  1998.
  7. S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy", IEEE Trans. Antennas Propagat., vol. 45, pp.  392-400, Mar.  1997 .
  8. C. Hulse and K. André, "Dispersive models for the finite-difference time-domain method: Design, analysis and implementation", J. Opt. Soc. Amer. A, vol. 11, pp.  1802-1811, 1994.
  9. P. G. Petropoulos, "Stability and phase error analysis of FD-TD in dispersive dielectrics", IEEE Trans. Antennas Propagat., vol.  42, pp.  62-69, Jan.  1994.
  10. W. H. Weedon and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media", IEEE Trans. Antennas Propagat., vol. 45, pp.  401-410, Mar.  1997.
  11. J. L. Young, "A full finite difference time domain implementation for radio wave propagation in a plasma", Radio Sci., vol. 29, pp.  1513-1522,  1994.
  12. J. L. Young, "On the dispersion errors related to (FD)2TD type schemes", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  1902-1910, Aug.  1995.
  13. P. Yeh, Optical Waves in Layered Media, New York: Wiley, 1988.
  14. J. A. Pereda, , private communication, 1998