2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 6, June 2000

Table of Contents for this issue

Complete paper in PDF format

Adaptive Multiscale Moment Method (AMMM)for Analysis of Scattering fromPerfectly Conducting Plates

Chaowei Su and T. K. Sarkar Fellow, IEEE

Page 932.

Abstract:

Adaptive multiscale moment method (AMMM) is presented for the analysis of scattering from a thin perfectly conducting plate. This algorithm employs the conventional moment method and a special matrix transformation,which is derived from the tensor products of the two one-dimensional (1-D) multiscale triangular basis functions that are used for expansion and testing functions in the conventional moment method. The special feature of these new basis functions introduced through this transformation is that they are orthogonal at the same scale except at the initial scale and not between scales. From one scale to another scale, the initial estimate for the solution can be predicted using this multiscale technique. Hence, the compression is applied directly to the solution and the size of the linear equations to be solved is reduced, thereby improving the efficiency of the conventional moment method. The basic difference between this methodology and the other techniques that have been presented so far is that we apply the compression not to the impedance matrix, but to the solution itself directly using an iterative solution methodology. The extrapolated results at the higher scale thus provide a good initial guess for the iterative method. Typically, when the number of unknowns exceeds a few thousand unknowns, the matrix solution time exceeds generally the matrix fill time. Hence, the goal of this method is directed in solving electrically larger problems, where the matrix solution time is of concern. Two numerical results are presented, which demonstrate that the AMMM is a useful method to analyze scattering from perfectly conducting plates.

References

  1. R. F. Harrington, Field Computation by Moment Method, New York: MacMillan, 1968.
  2. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Eds., Computational Electromagnetics: Frequency-Domain Method of Moments, New York: IEEE Press, 1992.
  3. D. P. Bouche, F. A. Molinet and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering", Proc. IEEE, vol. 81, pp.  658-1684, Dec.  1993.
  4. G. A. Thiele, "Overview of selected hybrid method in radiating system analysis", Proc. IEEE, vol. 80, pp.  67-78, Jan.  1992.
  5. L. N. Medgyesi-Mitschang and D. S. Wang, "Hybrid methods in computational electromagnetics: A review", Comput. Phys. Commun., vol. 68, pp.  76-94, May  1991.
  6. F. X. Canning, "The impedance matrix localization method (IML) uses", IEEE Trans. Antennas Propagat., vol. 41, pp.  659-667, May  1993.
  7. F. X. Canning, "The impedance matrix localization method (IML) permits solution of large scatterers", IEEE Magn., vol. 27, pp.  4275-4277, Sept.  1991.
  8. F. X. Canning, "The impedance matrix localization method (IML) for MM calculation", IEEE Trans. Antennas Propagat., vol.  32, pp.  18-30, Oct  1990.
  9. F. X Canning, "Transformations that produce a sparse moment method matrix", J. Electromagn. Wave Applicat., vol. 4, no.  9, pp.  893-913, 1990.
  10. R. Coifman, V. Rohklin and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription", IEEE Antennas Propagat. Mag., vol. 35, pp.  7-12, 1993 .
  11. V. Rohklin, "Rapid solution of integral equations of scattering in two dimensions", J. Comput. Phys., vol. 86, pp.  414-439, 1990.
  12. V. Rohklin, "Rapid solution of integral equations of classical potential theory", J. Comput. Phys., vol. 60, pp.  187-207,  1985.
  13. A. Boag and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems", IEEE Trans. Antennas Propagat., vol. 42, pp.  366-372,  Mar.  1994.
  14. E. Michielssen and A. Boag, "Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems", Microwave Opt. Tech. Lett., vol. 7, no. 17, pp.  790-795, Dec.  1994.
  15. E. Michielssen and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures", in 11th Annu. Rev. Progress ACES, Monterey, CA, Mar. 1995, pp.  614-620. 
  16. E. Michielssen and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures", IEEE Trans. Antennas Propagat., vol. 44, pp.  1086-1093, Aug.  1996.
  17. G. Beylkin, R. Coifman and V. Rokhlin, "Fast wavelet transform and numerical algorithm I", Comm. Pure Appl. Math., vol. 44, pp.  141-183, 1991.
  18. B. K. Alpert, G. Beylkin, R. Coifman and V. Rokhlin, "Wavelet-like bases for the fast solution of second-kind integral equation", SIAM J. Sci. Comp., vol. 14, pp.  159-184,  Jan.  1993.
  19. B. Z. Steinberg and Y. Leviatan, "On the use of wavelet expansions in the method of moments", IEEE Trans. Antennas Propagat., vol. 41, pp.  610-619,  1993.
  20. J. C. Goswami, A. K. Chan and C. K. Chui, "On solving first-kind integral equations using wavelets on a bounded interval", IEEE Trans. Antennas Propagat., vol. 43, pp.  614-622, June  1995.
  21. G. F. Wang, "A hybrid wavelet expansion and boundary element analysis of electromagnetic scattering from conducting objects", IEEE Trans. Antennas Propagat., vol. 42, pp.  170-178, Feb.  1995.
  22. W. C. Chew, J. M. Jin, C. C. Lu, E. Michielssen and J. M. Song, "Fast solution methods in electromagnetics", IEEE Trans. Antennas Propagat., vol. 45, pp.  533-543, Mar.  1997.
  23. C. Su and T. K. Sarkar, "A multiscale moment method for solving Fredholm integral equation of the first kind", J. Electromagn. Waves Appl., vol. 12, pp.  97-101, 1998.
  24. C. Su and T. K. Sarkar, "Scattering from perfectly conducting strips by utilizing an adaptive multiscale moment method", Progress Electromagn. Res., vol. PIER 19, pp.  173-197, 1998.
  25. C. Su and T. K. Sarkar, "Electromagnetic scattering from coated strips utilizing the adaptive multiscale moment method", Progress Electromagn. Res., vol. PIER 18, pp.  173-208, 1998.
  26. C. Su and T. K. Sarkar, "Electromagnetic scattering from two-dimensional electrically large perfectly conducting objects with small cavities and humps by use of adaptive multiscale moment methods (AMMM)", J. Electromagn. Waves Appl., vol. 12, pp.  885-906, 1998.
  27. C. Su and T. K. Sarkar, "Adaptive multiscale moment method for solving two-dimensional Fredholm integral equation of the first kind", J. Electromagn. Waves Appl., vol. 13, no. 2, pp.  175-176, 1999.
  28. A. Brandt, "Multi-level adaptive solutions to boundary value problems", Math. Comput., vol. 31, pp.  330 -390, 1977.
  29. W. Hackbusch, Multigrid Methods and Applications, New York: Springer-Verlag, 1985.
  30. S. F. McCormick, Multigrid Methods: Theory, Application, and Super-Computing, New York: Marcel Dekker, 1988.
  31. J. Mandel, "On multilevel iterative methods for integral equations of the second kind and related problems", Numer. Math., vol. 46, pp.  147-157, 1985.
  32. P. W. Hemker and H. Schippers, "Multiple grid methods for the solution of Fredholm integral equations of the second kind", Math. Comput., vol. 36, no. 153, 1981.
  33. K. Kalbasi and K. R. Demarest, "A multilevel enhancement of the method of moments", in 7th Annu. Rev. Progress Appl. Computat. Electromagn. , Monterey, CA, Mar. 1991, pp.  254-263. 
  34. K. Kalbasi and K. R. Demarest, "A multilevel formulation of the method of moments", IEEE Trans. Antennas Propagat., vol. 41, pp.  589-599,  May  1993.
  35. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978.
  36. T. K. Sarkar, and K. Kim, "Solution of large dense complex matrix equations utilizing wavelet-like transforms", IEEE Trans. Antennas Propagat., vol. 47, pp. 1628-1632, Oct. 1999.