2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Spaced Directive Antennas for Mobile Communications by the Fourier Transform Method

Rodney Vaughan Senior Member, IEEE

Page 1025.

Abstract:

The Fourier relations between channel transfer function and scattering distribution can apply to personal and mobile communications where multipath is a prevalent phenomena. In this paper, the transform relations are reviewed and interpreted for the mobile radio channel. The effective scattering distribution is the vector product of the antenna pattern and the incident waves and is a scalar function of angle and delay time. The space base-band frequency correlation function transforms with the averaged power of the effective scattering distribution. If the angular power density marginal of the effective scattering distribution is known, then the transform relations can be used for configuring antennas for spatial diversity. Similarly, if the delay time marginal is known, then conditions for frequency diversity are available. The two-dimensional (2-D) transform gives a convenient route for assessing tradeoffs between combined frequency and space diversity. Using modeled distributions, solutions are given for spaced directive antennas and an example is discussed for the space-frequency tradeoff.

References

  1. R. H. Clarke, "Multiple diversity theory of mobile radio reception", Bell Syst. Tech. J., pp.  967-1000, July/Aug.  1968.
  2. W. C. Jakes, Microwave Mobile Communications, NJ: AT&T Press, 1974.
  3. R. G. Vaughan and N. L. Scott, "Closely spaced monopoles for mobile communication", Radio Sci., vol. 28, no. 6, pp.  1259 -1266, Nov.  1993.
  4. P. A. Bello, "Characterization of randomly time-variant linear channels", IEEE Trans. Circuits Syst., vol. CS-11, pp.  360 -393, Dec.  1963.
  5. M. J. Gans, "A power-spectral theory of propagation in the mobile radio environment", IEEE Trans. Veh. Technol., vol. VT-21, pp.  27-38,  Feb.  1972.
  6. W. C.-Y. Lee, "Effects on correlation between two mobile radio base-station antennas", IEEE Trans. Commun., vol. 21, pp.  1214-1224, Nov.  1973.
  7. R. G. Vaughan and J. B. Andersen, "Antenna diversity in mobile communications", IEEE Trans. Veh. Technol., vol. VT-36, pp.  149-172, Nov.  1987 .
  8. J. B. Andersen, S. L. Lauritzen and C. Thommesen, "Distributions of phase derivatives in mobile communications", in Proc. Inst. Elect. Eng., vol. 137, 1990, pp.  197-201. 
  9. Y. Ebine, T. Takahashi and Y. Yamada, "A study of vertical space diversity for a land mobile radio", Electron. Commun. Jpn., vol. 76, no. 10, pp.  68-76, 1991.
  10. P. C. F. Eggers, "Angular dispersive mobile radio environments sensed by highly directive base station antennas", in Proc. 6th Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC 95), Toronto, Canada,Sept. 1995, pp.  522- 526. 
  11. J. C. Liberti and T. S. Rappaport, "A geometrically based mode for line-of-sight multipath radio channels", in Proc. 46th IEEE Veh. Technol. Conf., Atlanta, GA, May 1996, pp.  844-848. 
  12. K. I. Pedersen, P. E. Mogensen and B. H. Fleury, "Power azimuth spectrum in outdoor environments", Electron. Lett., vol. 33, no. 18, pp.  1583-1584, 1997.
  13. M. Kalkan and R. H. Clarke, "Prediction of the space-frequency correlation function for base station diversity reception", IEEE Trans. Veh. Technol., vol. 46, pp.  176-184, Feb.  1997.
  14. J. Fuhl, A. F. Molisch and E. Bonek, "Unified channel model for mobile radio systems with smart antennas", Inst. Elect. Eng. Proc. Radar, Sonar, Navigat., vol.  145, no. 1, pp.  32-41, Feb.  1998.
  15. T. Fulghum and K. Molnar, "The jakes fading model incorporating angular spread for a disk of scatterers", in Proc. 48th Veh. Technol. Conf., Ottawa, Canada,May 1998, pp.  489-493. 
  16. P. L. Perini and C. L. Holloway, "Angle and space diversity comparisons in different mobile radio environments", IEEE Trans. Antennas Propagat., vol. 46, pp.  764-775, June  1998.
  17. O. Nørklit and J. B. Andersen, "Diffuse channel model and experimental results for array antennas in mobile communications", IEEE Trans. Antennas Propagat., vol. 46, pp.  834-840, June  1998.
  18. R. G. Vaughan, "Pattern translation and rotation in uncorrelated source distributions for multiple beam antennas design", IEEE Trans. Antennas Propagat., vol. 46, pp.  982-990, July  1998.
  19. G. Durgin and T. S. Rappaport, "Effects of multipath angular spread on the spatial cross-correlation of received voltage envelopes", in Proc. 49th IEEE Veh. Technol. Conf., Houston, TX, May 1999, pp.  996-1000. 
  20. O. Nørklit and R. G. Vaughan, "Angular partitioning to yield equal doppler contributions", IEEE Trans. Veh. Technol., vol. 48, pp.  1437-1442,  Sept.  1999.
  21. R. Raich and R. G. Vaughan, "Source power distribution for multipath environment using near field circular array beamformer", Electron. Lett., vol. 35, no.  22, pp.  1893-1894, Oct.  1999.
  22. W. C. Jakes, Microwave Mobile Communications, Piscataway, NJ: IEEE Press, 1994.