2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Specifying PML Conductivities by Considering Numerical Reflection Dependencies

Scott C. Winton and Carey M. Rappaport Senior Member, IEEE

Page 1055.

Abstract:

Berenger's perfectly matched layer (PML) absorbing boundary condition (ABC) has greatly enhanced finite-difference time-domain (FDTD) scattering analysis. In a discretized domain, however, performance is signal-dependent and large-angle performance is poor due to a rapid reduction in layer decay rate. Increasing the conductivity to offset this reduction increases the discretization errors, especially at near-normal incidence angles. However, by carefully specifying the conductivity in each of the PML sublayers, it is possible to balance the small and large angle performance. The signal-dependence of reflections may be described in terms of the number of spatial points per wavelength. This lends itself to an overall strategy for which to search for PML profiles that provide superior performance for waves incident on a PML at angles between 0-75° and signals that have at least 15 spatial points per wavelength sampling. A one-dimensional (1-D) projection method may be employed to allow an exhaustive search to become a viable alternative to optimization. Such a search provides profile parameters that, while not necessarily"optimal,"give excellent wide-angle wide-band reflection performance.

References

  1. K. S. Yee, "Numerical solution of initial boundary-value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, May  1966.
  2. B. Engquist and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves", Mathematical Computat., vol. 31, pp.  629-651, 1977.
  3. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations", IEEE Trans. Electromagn. Compat., vol. EMC-23, pp.  377-382, Nov.  1981.
  4. K. Mei and J. Fang, "Superabsorption-A method to improve absorbing boundary conditions", IEEE Trans. Antennas Propagat., vol. 40, pp.  1001-1010,  Sept.  1992.
  5. C. Rappaport and L. Bahrmasel, "An absorbing boundary condition based on anechoic absorber for EM scattering computation", J. Electromagn. Waves Applicat., vol. 6, no. 12, pp.  1621-1634, Dec.   1992.
  6. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Computat. Phys., vol. 114, pp.  185-200, Oct.  1994.
  7. S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices", IEEE Trans. Antennas Propagat., vol. 44, pp.  1630-1639, Dec.  1996.
  8. W. Chew and W. Weedon, "A 3-D perfectly matched medium of modified Maxwell's equations with stretched coordinates", Microwave Opt. Technol. Lett., vol. 7, no. 13, pp.  559-604, Sept.  1994.
  9. C. Rappaport, "Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space", IEEE Microwave Guided Wave Lett., vol.  5, pp.  90-92, Mar.  1995.
  10. D. Katz, E. Thiele and A. Taflove, "Validation and extension to three dimensions of the Berenger PML absorbing boundary", IEEE Microwave Guided Wave Lett., vol. 4, pp.  268-270, Aug.  1994.
  11. M. Gribbon, S. Lee and A. Cangellaris, "Modification of Berenger's perfectly matched layer for the absorption of electromagnetic waves in layered media", in Proc. 11th Annu. Rev. Progress Appl. Computat. Electromagn. Symp. Dig. , Monterey, CA, Mar. 1995, pp.  498-503. 
  12. S. Gedney and A. Roden, "The uniaxial perfectly matched layer (UPML) truncations of FDTD lattices for generalized media", in URSI Symp. Dig., Baltimore, MD, July 1996, p.  366. 
  13. C. Rappaport, "Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space", IEEE Trans. Magn., pp.  968-974, May  1996.
  14. Z. Wu and J. Fang, "High-performance PML algorithms", IEEE Microwave Guided Wave Lett., vol. 6, pp.  335-337, Sept.  1996.
  15. L. Gianluca and O. Gandhi, "On the optimal design of the PML absorbing boundary condition for the FDTD code", IEEE Trans. Antennas Propagat., vol. 45, pp.  914-916, May  1997.
  16. Z. Wu and J. Fang, "Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2676 -2683, Dec.  1995.
  17. J. Wu, R. Lee and J. Lee, "The use of higher order edge-based finite elements to improve the accuracy of the anisotropic perfectly matched layer", in URSI Symp. Dig., Baltimore, MD, July 1996, p.  361. 
  18. J. Fang and Z. Wu, "Closed-form expression of numerical reflection coefficient of perfectly matched layers", in Proc. URSI Symp. Dig., Baltimore, MD, July 1996, p.  364. 
  19. W. Chew and J. Jin, "private communication", 1996
  20. Z. Wu and J. Fang, "Closed-form expression of numerical reflection coefficient at PML interfaces and optimization of PML performance", IEEE Microwave Guided Wave Lett., vol. 6, pp.  332-334, Sept.  1996 .
  21. S. Winton and C. Rappaport, "Implementation of a two dimensional plane wave FDTD using one dimensional FDTD on the lattice edges", in Proc.'97 ACES Symp. Dig., Monterey, CA, Mar. 1997, pp.  1156-1162. 
  22. J. De Moerloose and M. Stuchly, "An efficient way to compare ABC's", Antennas Propagat. Mag., vol. 38, no. 1, pp.  71-75, Feb.  1996.