2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 7, July 2000

Table of Contents for this issue

Complete paper in PDF format

Direction of Arrival Estimation Based on Phase Differences Using Neural Fuzzy Network

Ching-Sung Shieh and Chin-Teng Lin Senior Member, IEEE

Page 1115.

Abstract:

A new high-resolution direction of arrival (DOA) estimation technique using a neural fuzzy network based on phase difference (PD) is proposed in this paper. The conventional DOA estimation method such as MUSIC and MLE,are computationally intensive and difficult to implement in real time. To attach these problems, neural networks have become popular for DOA estimation in recent years. However, the normal neural networks such as multilayer perceptron (MLP) and radial basis function network (RBFN) usually produce the extra problems of low convergence speed and/or large network size (i.e., the number of network parameters is large). Also, the way to decide the network structure is heuristic. To overcome these defects and take use of neural learning ability, a powerful self-constructing neural fuzzy inference network (SONFIN) is used to develop a new DOA estimation algorithm in this paper. By feeding the PD's of received radar-array signals, the trained SONFIN can give high-resolution DOA estimation. The proposed scheme is thus called PD-SONFIN. This new algorithm avoids the need of empirically determining the network size and parameters in normal neural networks due to the powerful on-line structure and parameter learning ability of SONFIN. The PD-SONFIN can always find itself an economical network size in fast learning process. Our simulation results show that the performance of the new algorithm is superior to the RBFN in terms of convergence accuracy,estimation accuracy, sensitivity to noise, and network size.

References

  1. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications, New York: Wiley, 1986.
  2. M. H. Hayes, Statistical Digital Signal Processing and Modeling, New York: Wiley, 1996.
  3. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.
  4. S. M. Kay and S. L. Marple Jr., "Spectrum analysis-A modern perspective", Proc. IEEE , vol. 69, pp.  1380-1419, Nov.  1981.
  5. D. H. Johnson and S. R. DeGraaf, "Improving resolution of bearing in passive sonar arrays by eigenvalue analysis", IEEE Trans. Acoust.,Speech, Signal Processing, vol. ASSP-30, pp.  638-647, Aug.   1982.
  6. R. O. Schmidt, "Multiple emitter location and signal parameter estimation", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  276-280, Mar.  1986.
  7. A. Paulraj and T. Kailath, "Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields", IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, Feb.  1986.
  8. R. Roy and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques", IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no.  7, pp.  984-995, July  1989.
  9. S. Jha and T. S. Durrani, "Direction of arrival estimation using artificial neural networks", IEEE Trans. Syst., Man, Cybern., vol. 21, no.  5, pp.  1192-1201, Sept./Oct.  1991.
  10. H. L. Southall, J. A. Simmers and T. H. O'Donnell, "Direction finding in phased arrays with a neural network beamformer", IEEE Trans. Antennas Propagat., vol. 43, pp.  1369-1374, Dec.  1995.
  11. J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks", Neural Computat., vol. 3, pp.  246-257, 1991.
  12. T. Lo, L. Henry and L. John, "Radial basis function neural network for direction of arrivals estimation", IEEE Signal Processing Lett., vol. 1, pp.  45-47, Feb.  1994.
  13. A. H. El Zooghby, C. G. Christodoulou and M. Georgiopoulos, "Performance of radial-basis function networks for direction of arrival estimation with antenna arrays", IEEE Trans. Antennas Propagat., vol. 45, pp.  1611-1617, Nov.  1997.
  14. S. Chen, C. F. N. Cowan and P. M. Grant, "Orthogonal least squares learning algorithm for radial-basis function networks", IEEE Trans. Neural Networks, vol. 2, pp.  302 -309, Mar.  1991.
  15. C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its application", IEEE Trans. Fuzzy Syst., vol. 6, pp.  12-32, Feb.  1998.
  16. C. T. Lin, Neural Fuzzy Control Systems with Structure and Parameter Learning, Singapore: World Scientific, 1994.
  17. C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent Systems, Englewood Cliffs, NJ: Prentice-Hall, May 1996.
  18. L. Goodwin, "Ambiguity-resistant three and four channel interferometers", Naval Res. Lab. Rep. 8005, Sept. 1976.
  19. Y. H. Pao, Adaptive Pattern Reconigition and Neural Networks, Reading, MA: Addison-Wesley, 1989 .