2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

A Recursive Single-Source Surface Integral Equation Analysis for Wave Scattering by Heterogeneous Dielectric Bodies

David R. Swatek, Member, IEEE and Ioan R. Ciric Fellow, IEEE

Page 1175.

Abstract:

The problem of electromagnetic wave scattering by heterogeneous dielectric bodies is formulated in a recursive manner by organizing their homogeneous subregions into hierarchical multiply-nested structures. The inner details of each multiply-nested body are completely accounted for by an equivalent surface representation that yields the electric and magnetic fields tangent to the body only in terms of a single unknown electric surface current density distributed on its outer surface. In this manner, the problem of wave scattering by heterogeneous dielectric bodies is reduced to a scattering problem over their outermost surfaces in terms of only a single unknown current density. For a large number N of different homogeneous dielectric subregions within such a heterogeneous body, the proposed method has a computational complexity of O(N1.5) and storage requirements that increase in proportion to O(N). Furthermore, the equivalent surface representation derived for a particular subregion is invariant under rotation and translation and may, therefore, be applied to identical subregions without repeating the computation. The fields at any interior points are calculated by a fast backward recursion.

References

  1. M. A. Jensen and J. D. Freeze, "A recursive Green’s function method for boundary integral analysis of inhomogeneous domains", IEEE Trans. Antennas Propagat., vol. 46, pp.  1810-1816, Dec.  1998.
  2. A. Sahin and E. L. Miller, "Recursive T-matrix methods for scattering from multiple dielectric and metallic objects", IEEE Trans. Antennas Propagat., vol. 46, pp.  672-678, May  1998.
  3. W. C. Chew, J.-M. Jin, C.-C. Lu, E. Michielssen and J. M. Song, "Fast solution methods in electromagnetics", IEEE Trans. Antennas Propagat., vol. 45, pp.  533-543, Mar.  1997.
  4. W. C. Chew and C.-C. Lu, "The recursive aggregate interaction matrix algorithm for multiple scatterers", IEEE Trans. Antennas Propagat., vol. 43, pp.  1483-1486,  Dec.  1995.
  5. D. Felbacq, G. Tayeb and D. Maystre, "Scattering by a random set of parallel cylinders", J. Opt. Soc. Amer. A, vol. 11, pp.  2526-2538, Sept.  1994 .
  6. Y. M. Wang and W. C. Chew, "A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres", IEEE Trans. Antennas Propagat., vol. 41, pp.  1633-1639, Dec.  1993.
  7. W. C. Chew and C.-C. Lu, "The use of Huygens’ equivalence principle for solving the volume integral equation of scattering", IEEE Trans. Antennas Propagat., vol. 41, pp.  897-904, July  1993.
  8. A. J. Poggio and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems,"in Computer Techniques for Electromagnetics, R. Mittra, Ed. New York: Pergamon, 1973, pp.  159-264. 
  9. J. R. Mautz and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution", AEÜ, vol. 33, no. 2, pp.  71-80, 1979.
  10. P. M. Goggans, A. A. Kisk and A. W. Glisson, "Electromagnetic scattering from objects composed of multiple homogeneous regions using a region-by-region solution", IEEE Trans. Antennas Propagat., vol. 42, pp.  865-871, June  1994.
  11. D. Maystre and P. Vincent, "Diffraction d’une onde électromagnétique plane par un object cylindrique non infiniment conducteur de section arbitraire", Opt. Commun., vol. 5, pp.  327-330, Aug.  1972.
  12. D. Maystre, "A new general integral theory for dielectric coated gratings", J. Opt. Soc. Amer., vol. 68, pp.  490-495, Apr.  1978.
  13. D. Maystre, "Integral methods,"in Electromagnetic Theory of Gratings, R. Petit, Ed. Berlin: Germany: Springer-Verlag, 1980, pp.  63-100. 
  14. E. Marx, "Single integral equation for wave scattering", J. Math. Phys., vol. 23, pp.  1057-1065, June  1982 .
  15. E. Marx, "Integral equation for scattering by a dielectric", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  166-172,  Feb.  1984.
  16. A. W. Glisson, "An integral equation for electromagnetic scattering by homogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. AP-32, pp.  173-175, Feb.  1984.
  17. L. F. Knockaert and D. De Zutter, "Integral equation for the fields inside a dielectric cylinder immersed in an incident E-wave", IEEE Trans. Antennas Propagat., vol. AP-34, pp.  1065-1067, Aug.  1986.
  18. R. E. Kleinman and P. A. Martin, "On the single integral equation for the transmission problem of acoustics", SIAM J. Appl. Math, vol. 48, pp.  307-325,  Apr.  1988.
  19. P. A. Martin and P. Ola, "Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle", Proc. Roy. Soc. Edinburgh Sect. A, vol. 123, pp.  185-208, 1993.
  20. J. Mautz, "A stable integral equation for electromagnetic scattering from homogeneous bodies", IEEE Trans. Antennas Propagat., vol. 37, pp.  1070-1071, Aug.  1989.
  21. E. Marx, "Scattering by an arbitrary cylinder at a plane interface: broad side incidence", IEEE Trans. Antennas Propagat., vol. 37, pp.  619-628, May  1989.
  22. E. Marx, "Electromagnetic scattering from a dielectric wedge and the single hypersingular integral equation", IEEE Trans. Antennas Propagat., vol. 41, pp.  1001-1008, Aug.  1993.
  23. D. R. Swatek and I. R. Ciric, "Single integral equation for wave scattering by many-body systems", in Proc. 1995 URSI Int. Symp. Electromagn. Theory, St. Petersburg, Russia,May 1995, pp.  286-288. 
  24. D. R. Swatek and I. R. Ciric, "Single source integral equation for wave scattering by multiply-connected dielectric cylinders", IEEE Trans. Magn., vol. 32, pp.  878-881, May  1996.
  25. E. Marx, "Integral equations for scattering by a particle in a layer", in Proc. 1997 IEEE Antennas Propagat. Soc. Int. Symp., Montréal, Canada,July 1997, pp.  878-881. 
  26. D. R. Swatek and I. R. Ciric, "Eliminating spurious solutions in single integral equations for wave scattering by systems of dielectric cylinders", in Proc. 1997 PIERS Progress Electromagn. Res. Symp., Kowloon, Hong Kong,Jan. 1997, p.  406. 
  27. G. Pelosi and G. Toso, "A boundary element approach to the scattering from inhomogeneous dielectric bodies", IEEE Trans. Antennas Propagat., vol. 46, pp.  602-603, Apr.  1998.
  28. D. R. Swatek and I. R. Ciric, "Single integral equation for wave scattering by a layered dielectric cylinder", IEEE Trans. Magn., vol. 34, pp.  2724-2727,  Sept.  1998.
  29. D. R. Swatek and I. R. Ciric, "Reduction of multiply-nested dielectric bodies for wave scattering analysis by single integral equations", in Proc. 1998 URSI Int. Symp. Electromagn. Theory, Thessaloniki, Greece,May 1998, pp.  560-562. 
  30. D. R. Swatek and I. R. Ciric, "Reduction of multiply-nested dielectric bodies for wave scattering analysis by single source surface integral equations", J. Electromagn. Waves Applicat., vol. 14, pp.  405-422, Mar.  2000.
  31. D. R. Swatek and I. R. Ciric, "An equivalent surface representation for wave scattering by inhomogeneous objects", in Proc. ANTEM'98, Ottawa, Canada,Aug. 1998, pp.  255- 258. 
  32. D. R. Swatek and I. R. Ciric, "Equivalent surface representation for heterogeneous dielectric cylinders", Electron. Lett., vol. 34, pp.  2321-2322,  Nov.  1998.
  33. R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968.